Chapter 6 — Factorisation of Algebraic Expressions
Class 8 (Maharashtra Board) — Notes, Q&A & Textbook Solutions
- Common factor: Factor out greatest common factor: \(ax+ay = a(x+y)\).
- Difference of squares: \(a^2-b^2=(a-b)(a+b)\).
- Quadratic trinomial: \(ax^2+bx+c\). For \(x^2+(a+b)x+ab=(x+a)(x+b)\). Use splitting the middle term for general quadratics.
- Sum/difference of cubes:
\(a^3+b^3=(a+b)(a^2-ab+b^2)\),
\(a^3-b^3=(a-b)(a^2+ab+b^2)\). - Factorisation steps: Look for GCF, then special patterns, then split middle term if needed; check by expanding back.
Q1. Factorise \(4xy + 8xy^2\).
Ans: \(4xy(1+2y)\).
Q2. Factorise \(p^2 - 9q^2\).
Ans: \((p-3q)(p+3q)\).
Q3. Factorise \(x^2 + 5x + 6\).
Ans: \((x+2)(x+3).\)
Q4. Factorise \(x^2 - 10x + 21\).
Ans: \((x-7)(x-3).\)
Q5. Factorise \(2x^2 -9x +9\).
Ans: \((x-3)(2x-3).\)
Q6. Factorise \(2x^2 +5x -18\).
Ans: \((2x+9)(x-2).\)
Q7. Factorise \(x^3+27y^3.\)
Ans: \((x+3y)(x^2-3xy+9y^2).\)
Q8. Factorise \(x^3-8y^3.\)
Ans: \((x-2y)(x^2+2xy+4y^2).\)
Q9. Factorise \(a^2-b^2.\)
Ans: \((a-b)(a+b).\)
Q10. Factorise \(y^2+24y+144.\)
Ans: \((y+12)^2.\)
Q11. Factorise \(5y^2+5y-10.\)
Ans: \(5(y^2+y-2)=5(y+2)(y-1).\)
Q12. Factorise \(p^2-2p-35.\)
Ans: \((p-7)(p+5).\)
Q13. Factorise \(3x^2+14x+15.\)
Ans: \((3x+5)(x+3).\)
Q14. Factorise \(2x^2+x-45.\)
Ans: \((2x-9)(x+5).\)
Q15. Factorise \(20x^2-26x+8.\)
Ans: \(2(5x-4)(2x-1).\)
Q16. Factorise \(44x^2-x-3.\)
Ans: \((11x-3)(4x+1).\)
Q17. Factorise \(x^3+64y^3.\)
Ans: \((x+4y)(x^2-4xy+16y^2).\)
Q18. Factorise \(125p^3+q^3.\)
Ans: \((5p+q)(25p^2-5pq+q^2).\)
Q19. Factorise \(y^3-27.\)
Ans: \((y-3)(y^2+3y+9).\)
Q20. What is the factorisation of \(a^3-b^3\)?
Ans: \((a-b)(a^2+ab+b^2).\)
Q1. Factorise \(x^2+9x+18\).
Ans: \((x+3)(x+6)\) because \(3+6=9,\;3\cdot6=18.\)
Q2. Factorise \(x^2-10x+9\).
Ans: \((x-1)(x-9)\).
Q3. Factorise \(y^2+24y+144\).
Ans: \((y+12)^2.\)
Q4. Factorise \(5y^2+5y-10\).
Ans: \(5(y^2+y-2)=5(y+2)(y-1).\)
Q5. Factorise \(p^2-2p-35\).
Ans: \((p-7)(p+5).\)
Q6. Factorise \(p^2-7p-44\).
Ans: \((p-11)(p+4)\) since \(-11+4=-7,\; -11\cdot4=-44.\)
Q7. Factorise \(m^2-23m+120\).
Ans: \((m-8)(m-15).\)
Q8. Factorise \(m^2-25m+100\).
Ans: \((m-5)(m-20).\)
Q9. Factorise \(3x^2+14x+15\).
Ans: \((3x+5)(x+3).\)
Q10. Factorise \(2x^2+x-45\) by splitting the middle term.
Ans: Split \(x\) as \(-9x+10x\): \(2x^2-9x+10x-45\) = \(x(2x-9)+5(2x-9)=(2x-9)(x+5).\)
Q11. Factorise \(20x^2-26x+8\).
Ans: \(2(10x^2-13x+4)=2(5x-4)(2x-1).\)
Q12. Factorise \(44x^2-x-3\).
Ans: \((11x-3)(4x+1).\)
Q13. Factorise \(2y^2-4y-30\).
Ans: \(2(y^2-2y-15)=2(y-5)(y+3).\)
Q14. Show that \(x^3+27y^3=(x+3y)(x^2-3xy+9y^2)\) by expansion check.
Ans: Expand RHS: \(x^3-3x^2y+9xy^2+3x^2y-9xy^2+27y^3=x^3+27y^3.\)
Q15. Factorise \(8p^3+125q^3.\)
Ans: \((2p+5q)(4p^2-10pq+25q^2).\)
Q16. Factorise \(250p^3+432q^3.\)
Ans: \(2[(5p)^3+(6q)^3]=2(5p+6q)(25p^2-30pq+36q^2).\)
Q17. Factorise \(x^3-8y^3.\)
Ans: \((x-2y)(x^2+2xy+4y^2).\)
Q18. Factorise \(27p^3-125q^3.\)
Ans: \((3p-5q)(9p^2+15pq+25q^2).\)
Q19. Simplify \( (p+q)^3 + (p-q)^3\).
Ans: Expanding and adding gives \(2p^3 + 6pq^2.\)
Q20. Simplify \( (2x+3y)^3 - (2x-3y)^3\).
Ans: Gives \(72x^2y + 54y^3.\)
Q1. Factorise completely: \(2x^2 - 9x + 9\) (show steps).
Ans: Product \(2\cdot9=18\). Find two numbers with product 18 and sum \(-9\): \(-6\) and \(-3\).
Write \(2x^2-6x-3x+9\) = \(2x(x-3)-3(x-3)\) = \((x-3)(2x-3).\)
Q2. Factorise \(2x^2 +5x -18\) fully (steps).
Ans: \(2\cdot(-18)=-36\). Find numbers sum 5 and product \(-36\): 9 and -4.
Write \(2x^2+9x-4x-18 = x(2x+9)-2(2x+9)=(2x+9)(x-2).\)
Q3. Factorise \(x^2-10x+21\) by grouping.
Ans: Find -7 and -3: \(x^2 -7x -3x +21 = x(x-7)-3(x-7)=(x-7)(x-3).\)
Q4. Factorise \(2y^2 -4y -30\) showing factor 2 first.
Ans: \(2(y^2-2y-15)=2[y^2-5y+3y-15]=2[y(y-5)+3(y-5)]=2(y-5)(y+3).\)
Q5. Prove identity \(a^3+b^3=(a+b)(a^2-ab+b^2)\) by expanding RHS.
Ans: Expand RHS: \(a^3-ab^2+a b^2? \) Carry out full expansion: \((a+b)(a^2-ab+b^2)=a^3 - a^2 b + a b^2 + a^2 b - ab^2 + b^3 = a^3 + b^3.\)
Q6. Factorise \(x^3+64y^3\) and check by expansion.
Ans: \((x+4y)(x^2-4xy+16y^2)\). Expand to verify it equals \(x^3+64y^3.\)
Q7. Factorise \(125k^3 + 27m^3\).
Ans: \((5k+3m)(25k^2 -15km +9m^2).\)
Q8. Factorise \(24a^3 + 81b^3\) completely.
Ans: \(3(8a^3+27b^3)=3(2a+3b)(4a^2 -6ab +9b^2).\)
Q9. Factorise \(27m^3 - 216n^3\).
Ans: \(27(m^3-8n^3)=27(m-2n)(m^2+2mn+4n^2).\)
Q10. Factorise \(343a^3 - 512b^3\).
Ans: \((7a-8b)(49a^2+56ab+64b^2).\)
Q11. Simplify \( (x+y)^3 - (x-y)^3\) (show algebraic steps).
Ans: Expand both and subtract:
\((x+y)^3-(x-y)^3 = 6x^2y + 2y^3.\)
Q12. Simplify \( (3a+5b)^3 - (3a-5b)^3\).
Ans: Put \(A=3a,B=5b\) then difference = \(6A^2B + 2B^3\).
So result = \(6(3a)^2(5b) + 2(5b)^3 = 270a^2b + 250 b^3.\)
Q13. Prove \( (a+b)^3 - a^3 - b^3 = 3ab(a+b)\).
Ans: Expand \( (a+b)^3 = a^3 +3a^2b +3ab^2 + b^3\). Subtract \(a^3+b^3\) gives \(3ab(a+b).\)
Q14. Find \(p^3-(p+1)^3\).
Ans: \(p^3 - (p^3+3p^2+3p+1) = -3p^2 -3p -1.\)
Q15. Simplify \( (3xy-2ab)^3 - (3xy+2ab)^3\).
Ans: Using formula for difference of cubes of \((u-v)^3-(u+v)^3 = -6u^2v -2v^3\) with \(u=3xy,\;v=2ab\),
result = \(-108x^2y^2 ab -16a^3 b^3.\)
Q16. Show \(x^3 - 8 = (x-2)(x^2 +2x +4)\) by multiplication.
Ans: Multiply RHS: \(x^3 - 8\) — expansion verifies identity (difference of cubes).
Q17. Show how to factor \(16a^3 - 128 b^3\) completely.
Ans: Factor 16: \(16(a^3-8b^3)=16(a-2b)(a^2+2ab+4b^2).\)
Q18. Why is splitting the middle term useful? Give one example.
Ans: Splitting transforms quadratic into four-term expression so grouping can be used to factor. Example: \(2x^2+5x-18 = 2x^2+9x-4x-18 = (2x+9)(x-2).\)
Q19. Explain how to test your factorization.
Ans: Multiply the factors (expand) — if you get the original expression, factorisation is correct.
Q20. Factor and simplify \(x^3+27- (x+3)^3\).
Ans: Note \((x+3)^3 = x^3 +9x^2 +27x +27\). So expression \(x^3+27 - (x^3+9x^2+27x+27) = -9x^2 -27x = -9x(x+3).\)
Practice Set 6.1 — Quadratic factorisation (answers)
Below are the exact factorisations for the items listed in your textbook extract:
- \(x^2 + 9x + 18 = (x+3)(x+6)\).
- \(x^2 - 10x + 9 = (x-1)(x-9)\).
- \(y^2 + 24y + 144 = (y+12)^2\).
- \(5y^2 + 5y - 10 = 5(y^2+y-2) = 5(y+2)(y-1)\).
- \(p^2 - 2p -35 = (p-7)(p+5)\).
- \(p^2 - 7p -44 = (p-11)(p+4)\).
- \(m^2 -23m + 120 = (m-8)(m-15)\).
- \(m^2 -25m +100 = (m-5)(m-20)\).
- \(3x^2 +14x +15 = (3x+5)(x+3)\).
- \(2x^2 + x -45 = (2x-9)(x+5)\).
- \(20x^2 -26x +8 = 2(5x-4)(2x-1)\).
- \(44x^2 - x - 3 = (11x-3)(4x+1)\).
Practice Set 6.2 — Sum of cubes (worked answers)
Factorisations using \(a^3+b^3=(a+b)(a^2-ab+b^2)\):
- \(x^3 +64y^3 = (x+4y)(x^2 - 4xy +16y^2).\)
- \(125p^3 + q^3 = (5p+q)(25p^2 -5pq + q^2).\)
- \(125k^3 +27m^3 = (5k+3m)(25k^2 -15km +9m^2).\)
- \(2l^3 + 432m^3 = 2\bigl(l^3 +216m^3\bigr) = 2( l+6m)(l^2 -6lm +36m^2).\)
- \(24a^3 +81b^3 = 3\bigl(8a^3+27b^3\bigr)=3(2a+3b)(4a^2 -6ab +9b^2).\)
Practice Set 6.3 — Difference / sum of cubes & simplifications
Using \(a^3-b^3=(a-b)(a^2+ab+b^2)\) and related simplifications:
- \(y^3 - 27 = (y-3)(y^2+3y+9).\)
- \(x^3 - 64y^3 = (x-4y)(x^2 +4xy +16y^2).\)
- \(27m^3 - 216n^3 = 27(m^3 -8n^3) = 27(m-2n)(m^2 +2mn +4n^2).\)
- \(125y^3 -1 = (5y-1)(25y^2 +5y +1).\)
- \(8p^3 - 27q^3 = (2p-3q)(4p^2 +6pq +9q^2).\)
- \(343a^3 -512b^3 = (7a-8b)(49a^2 +56ab +64b^2).\)
- \(64x^3 -729y^3 = (4x-9y)(16x^2 +36xy +81y^2).\)
- \(16a^3 - 128b^3 = 16(a^3 -8b^3) = 16(a-2b)(a^2 +2ab +4b^2).\)
Simplifications (examples from book):
- \((x+y)^3 - (x-y)^3 = 6x^2y + 2y^3.\)
- \((3a+5b)^3 - (3a-5b)^3 = 270a^2b + 250b^3.\)
- \((a+b)^3 - a^3 - b^3 = 3ab(a+b).\)
- \(p^3 - (p+1)^3 = -3p^2 -3p -1.\)
- \((3xy-2ab)^3 - (3xy+2ab)^3 = -108x^2y^2 ab - 16 a^3 b^3.\)
Practice Set 6.4 — Rational algebraic expressions (best-effort)
The textbook Practice Set 6.4 contains several rational expression simplifications (fractions of algebraic expressions). A few items in your pasted text had OCR errors (digits and fractions stuck). I solved the clearly readable examples and illustrate method for simplifying rational algebraic expressions:
- Example (from the book text earlier):
Given (messy in paste), solved illustration: \( \dfrac{a^2}{a^3}\cdot\dfrac{a^5}{a^6} \) etc. (If you send the exact typed expression I will show step-by-step.) - Example 2 (clearer): Simplify \(\dfrac{x^2 - 9}{x-3}\).
Factor numerator: \((x-3)(x+3)\). Cancel \((x-3)\) to get \(x+3\) (for \(x\ne3\)). - Example 3: \(\dfrac{a^3 - b^3}{a-b} = a^2 + ab + b^2\) (because \(a^3-b^3=(a-b)(a^2+ab+b^2)\)).
- Example 4: \(\dfrac{(x^2-4)}{(x-2)} = x+2\) (since \(x^2-4=(x-2)(x+2)\), for \(x\ne2\)).
- Always try to factor out the greatest common factor (GCF) first.
- Recognise patterns: \(a^2-b^2,\; a^3\pm b^3,\; (ax+b)(cx+d)\) possibilities.
- For quadratics \(ax^2+bx+c\) either split the middle term or use AC method (find two numbers with product \(ac\) and sum \(b\)).
- After factorising, expand to verify — this prevents sign mistakes.
- When simplifying rational algebraic expressions, always state excluded values (denominator ≠ 0).