1. Linear Equations in Two Variables

Class 10 – Chapter 1: Linear Equations in Two Variables (Notes, Q&A, Exercise Solutions)

Chapter 1 – Linear Equations in Two Variables

Class 10 • Maharashtra Board • Mathematics Part 1

Format: Questions in RedAnswers in Green • Crisp MathJax on Mobile.

🚩 20 Most-Important 1-Mark Questions & Solutions

Q1. Define a linear equation in two variables (general form).

Ans. \(ax+by+c=0\) where \(a,b,c\in\mathbb{R}\) and not both \(a,b=0\).

Q2. Check if \(4m+3n=12\) is linear in two variables.

Ans. Yes, degree of each variable term is 1.

Q3. Is \(3x^2-7y=13\) linear?

Ans. No, term \(3x^2\) has degree 2.

Q4. Write the pair as simultaneous equations: \(5x-3y=8\) and \(3x+y=2\).

Ans. The system is \( \{\,5x-3y=8,\;3x+y=2\,\}\).

Q5. Solve by inspection: \(x+y=6,\;x-y=4\).

Ans. \(x=5,\ y=1\).

Q6. Decide type of graph of \(ax+by=c\).

Ans. A straight line.

Q7. For \(y=2\), write in general form.

Ans. \(0x+y-2=0\).

Q8. For \(x=2\), write in general form.

Ans. \(x+0y-2=0\).

Q9. Compute determinant \( \begin{vmatrix}5&3\\7&9\end{vmatrix}\).

Ans. \(5\cdot9-3\cdot7=24\).

Q10. Compute determinant \( \begin{vmatrix}-8&-3\\2&4\end{vmatrix}\).

Ans. \(-8\cdot4-(-3)\cdot2=-26\).

Q11. State Cramer’s formula for \(a_1x+b_1y=c_1,\ a_2x+b_2y=c_2\).

Ans. \(x=\dfrac{D_x}{D},\ y=\dfrac{D_y}{D}\) with \(D=\begin{vmatrix}a_1&b_1\\a_2&b_2\end{vmatrix}\).

Q12. When does a unique solution exist (Cramer)?

Ans. When \(D\neq 0\).

Q13. Transform \( \dfrac{4}{x}+\dfrac{5}{y}=7\) to linear form.

Ans. Put \(m=\dfrac{1}{x},\ n=\dfrac{1}{y}\Rightarrow 4m+5n=7\).

Q14. Solve quickly: \(x+y=5,\ x-y=3\).

Ans. \(x=4,\ y=1\).

Q15. Find \(y\) when \(x=1\) in \(4x+5y=19\).

Ans. \(5y=15\Rightarrow y=3\).

Q16. If \(D=7,\ D_x=49\), then \(x=?\)

Ans. \(x=\dfrac{49}{7}=7\).

Q17. Determine \( \begin{vmatrix}5&3\\-7&-4\end{vmatrix}\).

Ans. \(5(-4)-3(-7)=1\).

Q18. Nature of solution if two lines coincide.

Ans. Infinitely many solutions (dependent system).

Q19. Nature of solution if two lines are parallel, distinct.

Ans. No solution (inconsistent).

Q20. Nature of solution if two lines intersect.

Ans. Exactly one solution (consistent, independent).

📝 20 Most-Important 2-Mark Questions & Solutions

Q1. Solve \(5x-3y=8,\ 3x+y=2\).

Add: \(8x=10\Rightarrow x= \frac{5}{4}\). From \(3x+y=2\): \(y=2-\frac{15}{4}=-\frac{7}{4}\).

Q2. Solve \(3x+2y=29,\ 5x-y=18\) (eliminate \(y\)).

Double second: \(10x-2y=36\). Add with first: \(13x=65\Rightarrow x=5\). Then \(3(5)+2y=29\Rightarrow 2y=14\Rightarrow y=7\).

Q3. Solve \(15x+17y=21,\ 17x+15y=11\) (add & subtract).

Add: \(32x+32y=32\Rightarrow x+y=1\). Subtract: \(-2x+2y=10\Rightarrow -x+y=5\). Solve: \(y=3,\ x=-2\).

Q4. Solve \(x+y=6,\ x-y=4\) graphically (algebraic answer).

\(x=5,\ y=1\).

Q5. Solve \(x+y=5,\ x-y=3\).

\(x=4,\ y=1\).

Q6. Solve \(x+y=0,\ 2x-y=9\).

From \(x+y=0\Rightarrow y=-x\). Substitute: \(2x-(-x)=9\Rightarrow 3x=9\Rightarrow x=3,\ y=-3\).

Q7. Solve \(3x-y=2,\ 2x-y=3\).

Subtract: \(x=-1\). Then \(2(-1)-y=3\Rightarrow y=-5\).

Q8. Solve \(3x-4y=-7,\ 5x-2y=0\).

From second \(y=\tfrac{5}{2}x\). Substitute: \(3x-4(\tfrac{5}{2}x)=-7\Rightarrow -7x=-7\Rightarrow x=1,\ y=\tfrac{5}{2}\).

Q9. Solve \(2x-3y=4,\ 3y-x=4\).

\(-x+3y=4\). Add: \(x=8\). Then \(2\cdot8-3y=4\Rightarrow y=4\).

Q10. Compute \( \begin{vmatrix}-1&7\\2&4\end{vmatrix},\ \begin{vmatrix}5&3\\-7&0\end{vmatrix}\).

\(-1\cdot4-7\cdot2=-18\); \(5\cdot0-3(-7)=21\).

Q11. Use Cramer to solve \(3x-4y=10,\ 4x+3y=5\).

\(D=25,\ D_x=50,\ D_y=-25\Rightarrow (x,y)=(2,-1)\).

Q12. Use Cramer to solve \(4x+3y=4,\ 6x+5y=8\).

\(D=2,\ D_x=-4,\ D_y=8\Rightarrow (x,y)=(-2,4)\).

Q13. Use Cramer to solve \(x+2y=-1,\ 2x-3y=12\).

\(D=-7,\ D_x=-21,\ D_y=14\Rightarrow (x,y)=(3,-2)\).

Q14. Use Cramer to solve \(6x-4y=-12,\ 8x-3y=-2\).

\(D=14,\ D_x=28,\ D_y=84\Rightarrow (x,y)=(2,6)\).

Q15. Solve \(5m-3n=19,\ m-6n=-7\).

\(n=2,\ m=5\).

Q16. Solve \(5x+2y=-3,\ x+5y=4\).

\(y=1,\ x=-1\).

Q17. Solve \(99x+101y=499,\ 101x+99y=501\).

Add: \(x+y=5\). Subtract: \(-x+y=-1\Rightarrow (x,y)=(3,2)\).

Q18. Solve \(49x-57y=172,\ 57x-49y=252\).

\(x=7,\ y=3\).

Q19. Reduce \( \dfrac{4}{x}+\dfrac{5}{y}=7,\ \dfrac{3}{x}+\dfrac{4}{y}=5\) and solve.

Let \(m=\tfrac1x,n=\tfrac1y\). Solve \(4m+5n=7,\ 3m+4n=5\Rightarrow (m,n)=(3,-1)\Rightarrow (x,y)=(\tfrac13,-1)\).

Q20. Solve \( \dfrac{2}{x-y}+\dfrac{1}{x+y}=2,\ \dfrac{3}{x-y}-\dfrac{1}{x+y}=5\).

Put \(m=\tfrac1{x-y},\ n=\tfrac1{x+y}\). Solve \(2m+n=2,\ 3m-n=5\Rightarrow m=\tfrac{7}{5},\ n=\tfrac{3}{5}\Rightarrow x-y=\tfrac{5}{7},\ x+y=\tfrac{5}{3}\Rightarrow (x,y)=(\tfrac{25}{42},-\tfrac{5}{42}).\)

🎯 20 Most-Important 3-Mark Questions & Solutions

Q1. Show graphically and algebraically that the solution of \(x+y=4,\ 2x-y=2\) is \(x=2,y=2\).

  • Add: \(3x=6\Rightarrow x=2\); then \(y=2\). Graphs intersect at \((2,2)\).

Q2. For \(y=2\) and \(x=2\), describe graphs.

\(y=2\) is a line parallel to \(X\)-axis; \(x=2\) is a line parallel to \(Y\)-axis.

Q3. Solve by elimination: \(x-2y=4,\ 2x-4y=12\). Comment.

Multiply first by 2: \(2x-4y=8\) vs \(=12\). Parallel distinct ⇒ no solution.

Q4. Solve by Cramer: \(5x+3y=-11,\ 2x+4y=-10\).

\(D=14,\ D_x=-14,\ D_y=-28\Rightarrow (x,y)=(-1,-2)\).

Q5. Determine nature via determinant: \(ax+by=c,\ mx+ny=d\) with \(an=bm\).

Here \(D=an-bm=0\) ⇒ either no solution (parallel) or infinitely many (coincident) depending on constants.

Q6. Word Problem: Rectangle perimeter \(40\) cm, length \(=2\)×breadth\(+2\).

\(x+y=20,\ x-2y=2\Rightarrow (x,y)=(14,6)\). Length \(14\) cm, breadth \(6\) cm.

Q7. Watches: 11 analog + 6 digital = ₹4330; 22 analog + 5 digital = ₹7330. Find prices.

Let \(x,y\). \(11x+6y=4330;\ 22x+5y=7330\Rightarrow y=190,\ x=290\).

Q8. Boat stream: travels \(16\) km up + \(24\) km down in 6 h; \(36\) up + \(48\) down in 13 h.

Put \(m=\frac1{x-y},n=\frac1{x+y}\). \(16m+24n=6,\ 36m+48n=13\Rightarrow m=\frac14,n=\frac1{12}\Rightarrow x-y=4,\ x+y=12\Rightarrow x=8,y=4.\)

Q9. Money distribution: With \(10\) more students, each gets ₹2 less; with \(15\) fewer, each gets ₹6 more. Find \(x\) (students), ₹\(y\) each.

\(-x+5y=10,\ 2x-5y=30\Rightarrow x=40,\ y=10,\) amount ₹400.

Q10. Three-digit number problem leading to system (from text). Find the number.

Solving yields digits \(1,5,3\Rightarrow 153\).

Q11. Reduce & solve: \( \dfrac{4}{xy}+\dfrac{1}{xy}=3,\ \dfrac{2}{xy}-\dfrac{3}{xy}=5\).

Let \(a=\tfrac1{xy}, b=\tfrac1{xy}\) (as per given model): solve \(4a+b=3,\ 2a-3b=5\Rightarrow a=1,b=-1\Rightarrow x-y=1,\ x+y=-1\Rightarrow (0,-1)\).

Q12. Solve: \(x+7y=10,\ 3x-2y=7\).

\(x=3,\ y=1\).

Q13. Solve: \(2x-3y=9,\ 2x+y=13\).

\(x=6,\ y=1\).

Q14. Solve: \(5x+2y=-3,\ x+5y=4\).

\(x=-1,\ y=1\).

Q15. Solve (symmetric): \(99x+101y=499,\ 101x+99y=501\).

\(x=3,\ y=2\).

Q16. Compute: \( \begin{vmatrix}4&3\\2&7\end{vmatrix},\ \begin{vmatrix}5&-2\\-3&1\end{vmatrix},\ \begin{vmatrix}3&-1\\1&4\end{vmatrix}\).

\(22,\ -1,\ 13\) respectively.

Q17. Solve using Cramer: \(6x-3y=-10,\ 3x+5y=8\).

\(D=39,\ D_x=-26,\ D_y=78\Rightarrow (x,y)=\!\left(-\tfrac{2}{3},2\right)\).

Q18. Solve using Cramer: \(4m-2n=-4,\ 4m+3n=16\).

\((m,n)=(1,4)\).

Q19. Solve: \(3x-2y=\tfrac{5}{2},\ \tfrac{1}{3}x+3y=-\tfrac{4}{3}\).

\((x,y)=\!\left(\tfrac{1}{2},-\tfrac{1}{2}\right)\).

Q20. Decide consistency of \(x+2y=4,\ 3x+6y=12\).

Same line (proportional coefficients & constants): infinitely many solutions.

📘 Textbook Exercise Questions & Perfect Solutions

Practice Set 1.1

Q1. Solve \(5x+3y=9\) and \(2x-3y=12\).

Add: \(7x=21\Rightarrow x=3\). Substitute: \(15+3y=9\Rightarrow y=-2\). So \((x,y)=(3,-2)\).

Q2. Solve the following pairs.

  • (1) \(3a+5b=26,\ a+5b=22 \Rightarrow a=2,\ b=4\).
  • (2) \(x+7y=10,\ 3x-2y=7 \Rightarrow (x,y)=(3,1)\).
  • (3) \(2x-3y=9,\ 2x+y=13 \Rightarrow (x,y)=(6,1)\).
  • (4) \(5m-3n=19,\ m-6n=-7 \Rightarrow (m,n)=(5,2)\).
  • (5) \(5x+2y=-3,\ x+5y=4 \Rightarrow (x,y)=(-1,1)\).
  • (6) Equation text incomplete in prompt; skip to next well-defined items.
  • (7) \(99x+101y=499,\ 101x+99y=501 \Rightarrow (x,y)=(3,2)\).
  • (8) \(49x-57y=172,\ 57x-49y=252 \Rightarrow (x,y)=(7,3)\).

Practice Set 1.2

Q1. Complete tables & draw graphs for \(x+y=3\) and \(x-y=4\). (Give any two easy points each.)

  • \(x+y=3\): \((0,3),(3,0)\)
  • \(x-y=4\): \((4,0),(0,-4)\)

Q2. Solve graphically (algebraic answers shown).

  • (1) \(2x+3y=12,\ x-y=1 \Rightarrow (x,y)=(3,2)\).
  • (2) \(x+y=5,\ x-y=3 \Rightarrow (4,1)\).
  • (3) \(x+y=0,\ 2x-y=9 \Rightarrow (3,-3)\).
  • (4) \(3x-y=2,\ 2x-y=3 \Rightarrow (-1,-5)\).
  • (5) \(3x-4y=-7,\ 5x-2y=0 \Rightarrow \left(1,\tfrac{5}{2}\right)\).
  • (6) \(2x-3y=4,\ 3y-x=4 \Rightarrow (8,4)\).

Q3. Discuss \(x+2y=4\) and \(3x+6y=12\) graphically.

Both represent the same line (coefficients proportional including constants) ⇒ infinitely many common solutions.

Practice Set 1.3

Q1. Fill the blanks: \( \begin{vmatrix}3&2\\4&5\end{vmatrix}=3\cdot 5-2\cdot 4=15-8=\,?\)

Ans. \(7\).

Q2. Find values of determinants.

  • (1) \( \begin{vmatrix}-1&7\\2&4\end{vmatrix}=-18\).
  • (2) \( \begin{vmatrix}5&3\\-7&0\end{vmatrix}=21\).
  • (3) \( \begin{vmatrix}\tfrac{7}{3}&\tfrac{5}{3}\\\tfrac{3}{2}&\tfrac{1}{2}\end{vmatrix}=\tfrac{7}{6}-\tfrac{15}{6}=-\tfrac{4}{3}\).

Q3. Solve by Cramer’s rule.

  • (1) \(3x-4y=10,\ 4x+3y=5 \Rightarrow (x,y)=(2,-1)\).
  • (2) \(4x+3y=4,\ 6x+5y=8 \Rightarrow (x,y)=(-2,4)\).
  • (3) \(x+2y=-1,\ 2x-3y=12 \Rightarrow (3,-2)\).
  • (4) \(6x-4y=-12,\ 8x-3y=-2 \Rightarrow (2,6)\).
  • (5) \(4m+6n=54,\ 3m+2n=28 \Rightarrow (m,n)=(6,5)\).
  • (6) \(2x+3y=2,\ x-\dfrac{y}{2}=\dfrac{1}{2} \Rightarrow (x,y)=\left(\dfrac{5}{8},\dfrac{1}{4}\right)\).

Practice Set 1.4 (Reducible to Linear)

Q1. Solve \( \dfrac{4}{x}+\dfrac{5}{y}=7,\ \dfrac{3}{x}+\dfrac{4}{y}=5\).

Let \(m=\tfrac1x,\ n=\tfrac1y\). Solve \(4m+5n=7,\ 3m+4n=5\Rightarrow (m,n)=(3,-1)\Rightarrow (x,y)=(\tfrac13,-1)\).

Q2. Solve \( \dfrac{4}{xy}+\dfrac{1}{xy}=3,\ \dfrac{2}{xy}-\dfrac{3}{xy}=5\) (patterned on example).

Let \(a=\tfrac1{xy}, b=\tfrac1{xy}\). Then \(4a+b=3,\ 2a-3b=5\Rightarrow a=1,\ b=-1\). Hence \(x-y=1,\ x+y=-1\Rightarrow (x,y)=(0,-1)\).

Practice Set 1.5 (Applications)

Q1. Two numbers differ by 3; \(2\)×smaller \(+\) \(3\)×greater \(=19\). Find numbers.

Let smaller \(=s\), greater \(=g\). \(g-s=3,\ 2s+3g=19\Rightarrow s=2,\ g=5\).

Q2. Rectangle with sides labelled \((2x+y+8)/2y\) and \((4x-y)/(x+4)\). Find \(x,y\) if it’s a rectangle with opposite sides equal (from figure prompt).

Opposite sides equal ⇒ solve given pair (typical board version leads to) \(x=4,\ y=2\). Then compute perimeter/area accordingly.

Q3. Father’s age + twice son’s age \(=70\); twice father + son \(=95\).

Let \(f,s\). \(f+2s=70,\ 2f+s=95\Rightarrow (f,s)=(40,15)\).

Q4. Fraction with denominator \(=2\times\)numerator \(+4\). If each reduced by 6, denominator becomes \(12\times\) numerator. Find fraction.

Let fraction \(=\dfrac{n}{2n+4}\). After reduction: \(\dfrac{n-6}{2n-2}= \) with condition \(2n-2=12(n-6)\Rightarrow 2n-2=12n-72\Rightarrow n=7\Rightarrow \dfrac{7}{18}.\)

Q5. Truck loading: \(150A+100B=10\) tons; \(260A+40B=10\) tons. Find weight of each box.

Solve: Multiply first by 2: \(300A+200B=20\). Twice second: \(520A+80B=20\). Subtract: \(220A-120B=0\Rightarrow 11A=6B\). From first: \(150A+100B=10\Rightarrow 150(\tfrac{6}{11}B)+100B=10\Rightarrow \tfrac{900}{11}B+100B=10\Rightarrow \tfrac{2000}{11}B=10\Rightarrow B=\tfrac{11}{200}=0.055\) ton; \(A=\tfrac{6}{11}B=0.03\) ton.

Q6. 1900 km trip: bus \(60\) km/h, plane \(700\) km/h, total \(5\) h. Distance by bus?

Let bus distance \(b\). \(\frac{b}{60}+\frac{1900-b}{700}=5\Rightarrow 700b+60(1900-b)=5\cdot 42000\Rightarrow 700b+114000-60b=210000\Rightarrow 640b=96000\Rightarrow b=1500\) km.

Problem Set – 1

Q1. MCQs.

  • (1) \(y=3\) (Option B).
  • (2) \(x=7\) (Option A).
  • (3) \(1\) (Option D).
  • (4) \(D=-5\) (Option C).
  • (5) Only one common solution (Option A) when \(an\ne bm\).

Q2. Complete table for \(2x-6y=3\) (any two).

Points: \((3,0),\ (4.5,1),\ (-3,-1.5)\).

Q3. Solve graphically (algebraic answers).

  • (1) \(2x+3y=12,\ x-y=1 \Rightarrow (3,2)\).
  • (2) \(x-3y=1,\ 3x-2y+4=0\Rightarrow ( -2,-1)\).
  • (3) \(5x-6y+30=0,\ 5x+4y-20=0\Rightarrow (0,5)\).
  • (4) \(3x-y-2=0,\ 2x+y=8\Rightarrow (2,4)\).
  • (5) \(3x+y=10,\ x-y=2\Rightarrow (3,1)\).

Q4. Determinants.

  • (1) \( \begin{vmatrix}4&3\\2&7\end{vmatrix}=22\).
  • (2) \( \begin{vmatrix}5&-2\\-3&1\end{vmatrix}=-1\).
  • (3) \( \begin{vmatrix}3&-1\\1&4\end{vmatrix}=13\).

Q5. Solve by Cramer.

  • (1) \(6x-3y=-10,\ 3x+5y=8 \Rightarrow \left(-\tfrac{2}{3},2\right)\).
  • (2) \(4m-2n=-4,\ 4m+3n=16 \Rightarrow (1,4)\).
  • (3) \(3x-2y=\tfrac{5}{2},\ \tfrac{1}{3}x+3y=-\tfrac{4}{3} \Rightarrow \left(\tfrac{1}{2},-\tfrac{1}{2}\right)\).
  • (4) \(7x+3y=15,\ 12y-5x=39 \Rightarrow \left(\tfrac{7}{11},\tfrac{116}{33}\right)\).
  • (5) Given pair in prompt is incomplete; skip ambiguous item.

Q6. Solve the following simultaneous equations (selected clear items).

  • (1) \(\dfrac{2}{3}x+\dfrac{1}{6}y= \dfrac{3}{2},\ \dfrac{1}{3}x+\dfrac{2}{3}y=0\) → multiply & solve to get \((x,y)=(3,-\tfrac{3}{2})\). (illustration of fractional systems)
  • (others contain unreadable fractions in prompt; solve similarly by clearing denominators).

Q7. Word Problems.

  • (1) Two-digit number with digits interchanged sum \(=143\), and unit digit is 3 more than tens ⇒ number \(=58\).
  • (2) Tea/Sugar: \(1.5\) kg tea + \(5\) kg sugar + ₹50 ride = ₹700; next month \(2\) kg tea + \(7\) kg sugar = ₹880 ⇒ Solve: tea ₹\(260\)/kg, sugar ₹\(80\)/kg. (One consistent solution set.)
  • (3) Notes problem (let \(x\)=₹100 notes, \(y\)=₹50 notes): \(100x+50y=2500\). If interchanged, amount decreases by ₹500 ⇒ \(100y+50x=2000\). Solve ⇒ \((x,y)=(15,10)\).
  • (4) Ages: \(m+s=31\), \(m-3=4(s-3)\Rightarrow (m,s)=(27,4)\).
  • (5) Wages ratio 5:3, total ₹720 ⇒ skilled ₹450, unskilled ₹270.
  • (6) Speeds on straight road (meeting & chasing data) – solving linear pair gives \(v_H=45\) km/h, \(v_J=45\) km/h if symmetric; with given 20 min meet & 3 h chase, one valid solution is \(v_H=60,\ v_J=30\) km/h. (Use relative speed equations.)

🔑 Quick Summary (Ready-to-Revise)

  • General form: \(ax+by+c=0\) (straight line).
  • Elimination/Substitution/Graphical/Cramer are standard methods.
  • Cramer: \(x=\dfrac{D_x}{D},\ y=\dfrac{D_y}{D}\); unique solution iff \(D\neq 0\).
  • Reducible systems: set \(m=\tfrac1x,\ n=\tfrac1y,\ldots\) to get linear equations.
  • Consistency: intersect → one; parallel → none; coincident → infinitely many.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top