Chapter 1: Number Systems – Quick Notes & Practice (Class 9, NCERT/CBSE)
Heads-up
I can’t reproduce the exact NCERT textbook exercise questions verbatim due to copyright. Below, I’ve included original, textbook-style practice questions (with full solutions) that cover every skill from the chapter. If you provide the exercise text, I’ll solve them exactly as given.
I can’t reproduce the exact NCERT textbook exercise questions verbatim due to copyright. Below, I’ve included original, textbook-style practice questions (with full solutions) that cover every skill from the chapter. If you provide the exercise text, I’ll solve them exactly as given.
1-Mark Questions (20)
1) State whether \( \sqrt{49} \) is rational or irrational.
Rational, because \( \sqrt{49}=7 \in \mathbb{Z} \subset \mathbb{Q}\).
2) Classify \( \sqrt{2} \): rational or irrational.
Irrational; \( \sqrt{2} \notin \mathbb{Q}\).
3) Is \(0\) a natural number?
By CBSE convention for Class 9, \( \mathbb{N}=\{1,2,3,\dots\}\). So, \(0\) is not natural (it is a whole number).
4) Give the additive inverse of \(-\dfrac{5}{7}\).
It is \(+\dfrac{5}{7}\).
5) Write the multiplicative identity in \( \mathbb{R} \).
\(1\).
6) Decide if \( \dfrac{14}{35} \) is in lowest form.
No. \( \dfrac{14}{35}=\dfrac{2}{5}\) (divide by 7).
7) Decimal expansion of \( \dfrac{1}{8} \) is terminating or non-terminating?
Terminating: \( \dfrac{1}{8}=0.125\).
8) Is \(0.\overline{3}\) rational?
Yes; \(0.\overline{3}=\dfrac{1}{3}\in \mathbb{Q}\).
9) Name the set to which \( -\sqrt{9} \) belongs.
\( -\sqrt{9}=-3 \in \mathbb{Z} \subset \mathbb{Q}\subset \mathbb{R}\).
10) Write two integers between \(-2\) and \(3\).
\(-1,0,1,2\) (any two).
11) Which is greater: \( \sqrt{5} \) or \(2.2\)?
\( \sqrt{5}\approx 2.236 > 2.2\).
12) Is every integer a rational number?
Yes; \(n=\dfrac{n}{1}\in\mathbb{Q}\).
13) Identify: terminating or non-terminating repeating: \( \dfrac{7}{20}\).
Terminating; \(20=2^{2}\cdot 5\) only primes 2 and/or 5.
14) Simplify \( \left(\dfrac{1}{2}\right)^{-3} \).
\( \left(\dfrac{1}{2}\right)^{-3}=2^{3}=8\).
15) True/False: \( \sqrt{49}=\pm 7\).
False. Principal square root \( \sqrt{49}=+7\).
16) Value of \(5^{0}\).
\(1\) (for \(5\neq 0\)).
17) Find the reciprocal of \(-\dfrac{3}{5}\).
\(-\dfrac{5}{3}\).
18) Write a number that is irrational and lies between \(1\) and \(2\).
\( \sqrt{2}\approx 1.414\) is one example.
19) State the set relation: \( \mathbb{N}\subset \mathbb{W}\subset \mathbb{Z}\subset \mathbb{Q}\subset \mathbb{R}\).
True.
20) Write \(0.7\overline{2}\) as a fraction (in lowest form).
Let \(x=0.7\overline{2}\). Then \(10x=7.\overline{2}\), \(100x=72.\overline{2}\). Subtract: \(90x=65\Rightarrow x=\dfrac{65}{90}=\dfrac{13}{18}\).
2-Mark Questions (20)
1) Without division, decide if \( \dfrac{13}{40} \) has terminating decimal expansion.
Yes. \(40=2^{3}\cdot 5\). Denominator in lowest form has only 2’s and/or 5’s \(\Rightarrow\) terminating.
2) Express \(0.125\) as a rational number in lowest form.
\(0.125=\dfrac{125}{1000}=\dfrac{1}{8}\).
3) Convert \(1.0\overline{6}\) to a fraction.
Let \(x=1.0\overline{6}\). Then \(10x=10.\overline{6},\ 100x=106.\overline{6}\). Subtract: \(90x=96\Rightarrow x=\dfrac{96}{90}=\dfrac{16}{15}\).
4) Find three rational numbers between \(\dfrac{1}{5}\) and \(\dfrac{1}{3}\).
Equalize denominators: \(\dfrac{1}{5}=\dfrac{3}{15}\), \(\dfrac{1}{3}=\dfrac{5}{15}\). Choose \(\dfrac{7}{35},\dfrac{2}{9},\dfrac{4}{15}\) etc. One systematic way: write as decimals \(0.2\) and \(0.333...\); pick \(0.21, 0.25, 0.3\).
5) Place \( \sqrt{10} \) on the number line (explain construction briefly).
Construct a right triangle with legs 1 and 3 (\(1^{2}+3^{2}=10\)). Using the Pythagorean theorem, hypotenuse \(=\sqrt{10}\). Place it via semicircle method from 0 to 3 then add 1-unit perpendicular; the hypotenuse from 0 gives the point at \(\sqrt{10}\).
6) Compare \( \sqrt{3} \) and \( \dfrac{7}{4}\).
\( \sqrt{3}\approx 1.732 < 1.75=\dfrac{7}{4}\). Hence \( \sqrt{3}<\dfrac{7}{4}\).
7) Rationalize the denominator: \( \dfrac{5}{\sqrt{7}} \).
\( \dfrac{5}{\sqrt{7}}\cdot\dfrac{\sqrt{7}}{\sqrt{7}}=\dfrac{5\sqrt{7}}{7}\).
8) Simplify: \( \sqrt{72} \).
\( \sqrt{72}=\sqrt{36\cdot 2}=6\sqrt{2}\).
9) Determine whether \(0.1010010001\ldots\) is rational.
No. The block lengths of 1’s increase irregularly; the decimal is non-terminating and non-repeating \(\Rightarrow\) irrational.
10) Write \( \dfrac{3^{4}\cdot 3^{-2}}{3} \) as a single power of 3.
\(3^{4-2-1}=3^{1}=3\).
11) If \(a>0\), compare \(a\) and \(\dfrac{1}{a}\).
12) Find the product: \( \sqrt{5}\cdot \sqrt{20} \).
\( \sqrt{100}=10\).
13) Show that \( \dfrac{2}{3}\) has a non-terminating repeating decimal.
Denominator \(3\) has prime factor 3 (not 2 or 5) \(\Rightarrow\) non-terminating repeating: \(0.\overline{6}\).
14) Find two irrational numbers between \(2\) and \(3\).
\( \sqrt{5}\approx 2.236\), \( \sqrt{7}\approx 2.646\) (both between 2 and 3).
15) Simplify \( \left(\dfrac{5}{\sqrt{2}}\right)\left(\dfrac{\sqrt{8}}{5}\right) \).
\( \dfrac{5}{\sqrt{2}}\cdot \dfrac{2\sqrt{2}}{5}=2\).
16) Write the set of integers between \(-4\) and \(2\).
\(-3,-2,-1,0,1\).
17) Evaluate \( \left(2^{3}\right)^{4} \).
\(2^{12}=4096\).
18) Find the value of \( \dfrac{7^{5}}{7^{2}}\cdot 7^{-1}\).
\(7^{5-2-1}=7^{2}=49\).
19) Express \( \dfrac{9}{2^{3}\cdot 5^{2}} \) as a decimal and say its type.
Denominator has only \(2,5\Rightarrow\) terminating. Value \(=\dfrac{9}{200}=0.045\).
20) True/False with reason: The sum of a rational and an irrational is irrational.
True (in general). If \(r\in \mathbb{Q},\ i\notin \mathbb{Q}\), then \(r+i\notin \mathbb{Q}\). (Proof by contradiction: if \(r+i\in\mathbb{Q}\Rightarrow i\) would be rational.)
3-Mark Questions (20)
1) Prove: A rational number \( \dfrac{p}{q}\) (in lowest form) has a terminating decimal iff prime factorization of \(q\) is of the form \(2^{m}5^{n}\) (with \(m,n\ge 0\)).
(\(\Rightarrow\)) If decimal terminates at \(k\) places, \( \dfrac{p}{q}=\dfrac{N}{10^{k}}=\dfrac{N}{2^{k}5^{k}}\Rightarrow q\mid 2^{k}5^{k}\Rightarrow q=2^{m}5^{n}\). (\(\Leftarrow\)) If \(q=2^{m}5^{n}\), multiply numerator and denominator by \(2^{n-m}\) or \(5^{m-n}\) to get denominator \(10^{\max(m,n)}\Rightarrow\) terminating.
2) Show that \( \sqrt{3} \) is irrational (outline).
Assume \( \sqrt{3}=\dfrac{p}{q}\) in lowest terms. Then \(3q^{2}=p^{2}\Rightarrow 3\mid p\Rightarrow p=3k\Rightarrow p^{2}=9k^{2}\Rightarrow q^{2}=3k^{2}\Rightarrow 3\mid q\). Contradiction to lowest terms. Hence irrational.
3) Find five rational numbers between \( \dfrac{2}{7}\) and \( \dfrac{3}{7}\).
Write as \( \dfrac{20}{70}\) and \( \dfrac{30}{70}\). Choose equal-denominator fractions: \( \dfrac{21}{70}, \dfrac{22}{70}, \dfrac{23}{70}, \dfrac{24}{70}, \dfrac{25}{70}\) \((=\dfrac{3}{14},\dfrac{11}{35},\dfrac{23}{70},\dfrac{12}{35},\dfrac{5}{14})\).
4) Simplify and rationalize: \( \dfrac{3}{\sqrt{5}-\sqrt{3}} \).
\(\dfrac{3}{\sqrt{5}-\sqrt{3}}\cdot \dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\dfrac{3(\sqrt{5}+\sqrt{3})}{5-3}=\dfrac{3(\sqrt{5}+\sqrt{3})}{2}\).
5) If \(x=\sqrt{2}+\sqrt{3}\), find \(x^{2}\) and deduce whether \(x\) is rational.
\(x^{2}=2+3+2\sqrt{6}=5+2\sqrt{6}\) (irrational), so \(x\) is irrational.
6) Convert \( 3.2\overline{45} \) to fraction in lowest form.
Let \(x=3.2\overline{45}\). Then \(10x=32.\overline{45}\), \(1000x=3245.\overline{45}\). Subtract: \(990x=3213 \Rightarrow x=\dfrac{3213}{990}=\dfrac{1071}{330}\).
7) Show that the sum of two irrational numbers can be rational, with an example.
Example: \(\sqrt{2} + (2-\sqrt{2}) = 2\in \mathbb{Q}\). Both addends irrational, sum rational.
8) Evaluate: \( (\sqrt{5}-\sqrt{2})^{2} + 2\sqrt{10} \).
\((5+2-2\sqrt{10})+2\sqrt{10}=7\).
9) If \(a=\sqrt{7}-\sqrt{5}\), compute \( \dfrac{1}{a} \) in the form \(p\sqrt{7}+q\sqrt{5}\).
\(\dfrac{1}{\sqrt{7}-\sqrt{5}}\cdot\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\dfrac{\sqrt{7}+\sqrt{5}}{2}\Rightarrow p=q=\dfrac{1}{2}\).
10) Prove that between any two distinct reals there is a rational number.
Let \(a
11) Find \(x\) if \( \sqrt{2x+1} - \sqrt{x-2} = 1 \) (principal roots).
Let \(u=\sqrt{2x+1}, v=\sqrt{x-2}\). Then \(u=v+1\Rightarrow u^{2}=v^{2}+2v+1\Rightarrow 2x+1=(x-2)+2\sqrt{x-2}+1\Rightarrow x=2\sqrt{x-2}\). So \(x\ge 2\). Square: \(x^{2}=4(x-2)\Rightarrow x^{2}-4x+8=0\) has discriminant \(16-32<0\). Check initial steps: try plugging \(x=5\): \( \sqrt{11}-\sqrt{3}\approx 3.317-1.732\approx 1.585\neq 1\). Conclude: no real solution (domains satisfied but equality not met).
12) Simplify: \( \dfrac{\sqrt{18}+\sqrt{8}}{\sqrt{2}} \).
\( \dfrac{3\sqrt{2}+2\sqrt{2}}{\sqrt{2}}=5\).
13) If \(x= \dfrac{1}{\sqrt{3}-1} - \dfrac{1}{\sqrt{3}+1}\), find \(x\).
Rationalize each: \( \dfrac{\sqrt{3}+1}{2} - \dfrac{\sqrt{3}-1}{2} = 1\).
14) Prove: \( \sqrt{2}+\sqrt{3} \) is irrational.
If \( \sqrt{2}+\sqrt{3}\in\mathbb{Q}\Rightarrow (\sqrt{2}+\sqrt{3})^{2}=5+2\sqrt{6}\in\mathbb{Q}\Rightarrow \sqrt{6}\in\mathbb{Q}\) (contradiction). Hence irrational.
15) Find the decimal expansion type of \( \dfrac{77}{2^{2}\cdot 5^{3}} \) and write the value.
Terminating (only 2’s and 5’s). \( \dfrac{77}{500}=0.154\).
16) Evaluate: \( \left(\dfrac{3}{4}\right)^{-2} + \left(\dfrac{4}{3}\right)^{-2} \).
\( \left(\dfrac{4}{3}\right)^{2}+ \left(\dfrac{3}{4}\right)^{2}=\dfrac{16}{9}+\dfrac{9}{16}=\dfrac{256+81}{144}=\dfrac{337}{144}\).
17) Show \( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{8}}=\dfrac{3}{2\sqrt{2}} \) and rationalize.
\( \dfrac{1}{\sqrt{2}}+\dfrac{1}{2\sqrt{2}}=\dfrac{3}{2\sqrt{2}}=\dfrac{3\sqrt{2}}{4}\) after rationalizing.
18) If \(x=\sqrt{50}-\sqrt{8}+\sqrt{2}\), simplify.
\(x=5\sqrt{2}-2\sqrt{2}+\sqrt{2}=4\sqrt{2}\).
19) Prove: \( \sqrt{5} \) is not a terminating or repeating decimal.
If it terminated or repeated, it would be rational. But \(\sqrt{5}\) is irrational (standard proof like \(\sqrt{2}\)). Hence neither terminating nor repeating.
20) Let \(a=\sqrt{2}+\sqrt{5}\). Compute \(a^{2}-14\).
\(a^{2}=2+5+2\sqrt{10}=7+2\sqrt{10}\Rightarrow a^{2}-14=2\sqrt{10}-7\).
Exercise-Style Practice (Paraphrased) + Full Solutions
These are original problems that mirror the skills in NCERT Class 9 Chapter 1 (Number Systems): decimal expansions, rational/irrational classification, rationalizing surds, locating surds on the number line, and exponent laws. Every problem below includes a complete solution in green.
E1) Classify as terminating / non-terminating repeating / non-terminating non-repeating: \( \dfrac{17}{64},\ \dfrac{5}{12},\ \dfrac{2}{11}\).
\(\dfrac{17}{64}\): \(64=2^{6}\Rightarrow\) terminating.
\(\dfrac{5}{12}\): \(12=2^{2}\cdot 3\Rightarrow\) non-terminating repeating.
\(\dfrac{2}{11}\): prime 11 (not 2/5)\(\Rightarrow\) non-terminating repeating.
\(\dfrac{5}{12}\): \(12=2^{2}\cdot 3\Rightarrow\) non-terminating repeating.
\(\dfrac{2}{11}\): prime 11 (not 2/5)\(\Rightarrow\) non-terminating repeating.
E2) Write \( \dfrac{7}{15} \) as a decimal up to 6 places and classify.
Long division gives \(0.466666\ldots=0.4\overline{6}\Rightarrow\) non-terminating repeating.
E3) Insert four rational numbers between \( \dfrac{1}{6} \) and \( \dfrac{1}{5}\).
As decimals: \(0.1666\ldots\) and \(0.2\). Choose \(0.17, 0.175, 0.18, 0.19\) \(\Rightarrow\) \( \dfrac{17}{100},\dfrac{7}{40},\dfrac{9}{50},\dfrac{19}{100}\).
E4) Rationalize and simplify: \( \dfrac{4}{\sqrt{3}+\sqrt{2}} \).
Multiply by \( \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}} \Rightarrow \dfrac{4(\sqrt{3}-\sqrt{2})}{3-2}=4(\sqrt{3}-\sqrt{2})\).
E5) Show that \( 0.10\overline{9}=0.11\).
Since \(0.\overline{9}=1\), \(0.10\overline{9}=0.10+0.0\overline{9}=0.10+0.01=0.11\).
E6) Locate \( \sqrt{13} \) on the number line via geometric construction (brief steps).
Take segment \(OA=3\) and \(AB=2\Rightarrow OB=\sqrt{3^{2}+2^{2}}=\sqrt{13}\). With \(O\) as origin, mark the hypotenuse on the line using compass to locate \(\sqrt{13}\).
E7) Convert \( 2.4\overline{07}\) to a rational number.
Let \(x=2.4\overline{07}\). Then \(10x=24.\overline{07}\), \(1000x=2407.\overline{07}\). Subtract: \(990x=2383\Rightarrow x=\dfrac{2383}{990}\).
E8) Simplify: \( \sqrt{32} - \sqrt{18} + \sqrt{8} \).
\(4\sqrt{2}-3\sqrt{2}+2\sqrt{2}=3\sqrt{2}\).
E9) Decide if \( 0.202002000200002\ldots \) is rational.
The pattern gap increases; not repeating \(\Rightarrow\) irrational.
E10) Find three irrational numbers between \( \sqrt{2} \) and \( \sqrt{3} \).
Take convex combos: \( (1-t)\sqrt{2}+t\sqrt{3}\) for \(t=0.2,0.5,0.8\) (still irrational) or simpler: \( \sqrt{2.2}, \sqrt{2.4}, \sqrt{2.6}\).
💡 Tip: To add this page into your site without changing your existing menu bar, paste the code inside your content area. All questions are red and solutions are green, with MathJax rendering for perfect equations on mobile.