4. Measurement of Matter​

Class 9 Science – Chapter 4: Measurement of Matter – Smart Notes

⚗️ Chapter 4 – Measurement of Matter (Class 9 – Maharashtra Board)

Laws of Chemical Combination Atomic Mass & u Molecular Mass Mole (mol) Avogadro’s Number Valency Radicals Ionic Formulae Symbols (IUPAC)

1) 🧠 20 Most Important Words (with simple Hindi meanings)

WordMeaning (Simple Hindi)
Atomपदार्थ का सूक्ष्मतम कण
Moleculeदो/अधिक परमाणुओं का समूह
Law of conservation of massद्रव्य का द्रव्यमान अभिक्रिया में स्थिर रहता है
Law of constant proportionयौगिक में तत्त्व निश्चित अनुपात में होते हैं
Atomic mass (u)परमाणु का द्रव्यमान (डैल्टन इकाई)
Molecular massअणु में सभी परमाणुओं के द्रव्यमानों का योग
Moleकिसी पदार्थ की वह मात्रा जिसमें \(6.022\times10^{23}\) कण हों
Avogadro number\(6.022\times10^{23}\) कण प्रति मोल
Valencyसंयोजकता; बंध बनाने की क्षमता
Radicalआवेशित आयनिक समूह/आयन
WordMeaning (Simple Hindi)
Cationधनायन (धन आवेशित आयन)
Anionऋणायन (ऋण आवेशित आयन)
Ionic compoundकैटायन व एनायन से बना यौगिक
Dalton (u)एकीकृत परमाणु द्रव्यमान इकाई
Relative atomic massकार्बन-12 के सापेक्ष द्रव्यमान
Electronic configurationइलेक्ट्रॉनों की परतों में व्यवस्था
Variable valencyएक तत्त्व की एक से अधिक संयोजकताएँ
Composite radicalकई परमाणुओं का charged समूह (जैसे \(SO_4^{2-}\))
Simple radicalएकल परमाणु आयन (जैसे \(Na^+\), \(Cl^-\))
Chemical formulaयौगिक का संकेत जिसमें तत्त्व व अनुपात दिखते हैं

2) 📝 Important Notes (exam-ready)

Lavoisier’s Law (Conservation of Mass): In a chemical reaction, total mass of reactants = total mass of products. No net gain or loss of matter.

Proust’s Law (Constant Proportion): A pure compound always contains the same elements in the same fixed mass ratio (e.g., water H:O = \(1:8\)).

Chemical Symbols: IUPAC symbols—first letter capital, second (if any) small (Na, Cl, Fe, Hg, etc.).

Atomic Mass Unit: Unified atomic mass unit \(1\ \text{u}=1.66053904\times10^{-27}\ \text{kg}\). Carbon-12 scale: \(^{12}C=12\ \text{u}\).

Molecular Mass: Sum of atomic masses in the molecule. Example (via MathJax): \(M(H_2O)=2(1)+16=18\ \text{u}\).

Mole Concept: \(1\ \text{mol}\) contains \(N_A=6.022\times 10^{23}\) entities. \(n=\dfrac{m}{M}\), molecules \(=nN_A\).

Valency (electronic view): Number of electrons lost/gained/shared to achieve octet/duet. Na (2,8,1) → valency 1; O (2,6) → valency 2.

Radicals: Basic (cations, e.g., \(Na^+, NH_4^+\)) and acidic (anions, e.g., \(Cl^-, SO_4^{2-}\)). Charge magnitude = valency.

Writing Ionic Formulae: Write cation left, anion right, cross-multiply valencies → subscripts; reduce to simplest whole numbers (e.g., \(Na^+\) & \(SO_4^{2-}\) → \(Na_2SO_4\)).

Tip: Series of steps: Symbols → Valencies → Cross-multiply → Simplify → Final formula.

3) 🔹 20 “One-word answer” Type (answers in 1–2 lines)

1) Unit of atomic mass?

Unified atomic mass unit, Dalton (u).

2) Value of Avogadro’s number?

\(\displaystyle N_A=6.022\times10^{23}\ \text{mol}^{-1}\).

3) Mass of 1 mole of water?

\(18\ \text{g}\) (\(M=18\ \text{u}\)).

4) Molecules in 1 mole of any gas?

\(\displaystyle 6.022\times10^{23}\) molecules.

5) Law relating mass of reactants & products?

Law of conservation of mass (Lavoisier).

6) Law about fixed mass ratio in a compound?

Law of constant proportion (Proust).

7) Symbol of sodium & its common ion?

Na; ion \(Na^+\).

8) Charge on sulphate radical?

\(-2\) on \(SO_4^{2-}\).

9) What is valency of Mg?

2 (gives \(Mg^{2+}\)).

10) Formula of calcium hydroxide?

\(\mathrm{Ca(OH)_2}\).

11) Molecular mass of \(CO_2\)?

\(12+2\times16=44\ \text{u}\).

12) Name of \(NH_4^+\)?

Ammonium (basic radical).

13) Name of \(NO_3^-\)?

Nitrate (acidic radical).

14) Ion with variable valency of iron?

\(\mathrm{Fe^{2+}}\) (ferrous) & \(\mathrm{Fe^{3+}}\) (ferric).

15) Define mole in one line.

Amount containing Avogadro’s number of entities.

16) Unit of amount of substance?

mole (mol).

17) Composite radical example.

\(SO_4^{2-}, CO_3^{2-}, NH_4^+\).

18) Simple radical example.

\(Na^+, Cl^-, O^{2-}\).

19) Formula of sodium carbonate.

\(\mathrm{Na_2CO_3}\).

20) Define ‘u’ in words.

\(1\ \text{u}\) is \(1/12\) the mass of a carbon-12 atom.

4) ✨ 20 Very Short Answer Questions (1–2 lines each)

1) State conservation of mass with an example.

Mass is conserved; e.g., \(CaO+H_2O\to Ca(OH)_2\): total mass same before/after.

2) Why does water always show H:O = 1:8 by mass?

Fixed composition; \(M(H_2O)=2(1)+16\Rightarrow\) ratio \(2:16=1:8\).

3) Write \(n=\dfrac{m}{M}\) and meaning of symbols.

\(n\) moles, \(m\) mass (g), \(M\) molar mass (g/mol).

4) Give symbols: antimony, iron, gold, silver, mercury, lead, sodium.

Sb, Fe, Au, Ag, Hg, Pb, Na.

5) What is variable valency? Example.

Element shows more than one valency: Fe(II), Fe(III).

6) Molecules in 36 g water.

\(n=36/18=2\) mol ⇒ \(2N_A\) molecules.

7) Define radical.

Charged atom/group acting as a single ion (\(Na^+\), \(SO_4^{2-}\)).

8) Name two acidic radicals.

Chloride \(Cl^-\), sulphate \(SO_4^{2-}\).

9) Name two basic radicals.

Sodium \(Na^+\), ammonium \(NH_4^+\).

10) What are nucleons?

Protons + neutrons in nucleus.

11) Which is heavier: proton or electron?

Proton is much heavier than electron.

12) Define atomic number in words.

Number of protons in nucleus (=\# electrons in neutral atom).

13) Give formula of aluminium hydroxide.

\(\mathrm{Al(OH)_3}\).

14) Give formula of ferric phosphate.

\(\mathrm{FePO_4}\).

15) What is the charge on phosphate?

\(-3\) on \(PO_4^{3-}\).

16) What is meant by monoatomic and diatomic molecule?

Single-atom molecule (He), two-atom molecule (O\(_2\)).

17) Molecular mass of \(NaOH\)?

\(23+16+1=40\ \text{u}\).

18) Why cross-multiply valencies?

To balance total positive and negative charges to zero.

19) Define ‘chemical formula’ briefly.

Symbolic representation showing element types and simplest whole-number ratio.

20) Write formula of calcium oxide via valencies.

\(Ca^{2+}\) & \(O^{2-}\) → cross → \(CaO\).

5) ✍️ 20 Short Answer Questions (about 2–3 lines each)

1) State and verify law of constant proportion using \(CuO\).

Different \(CuO\) samples give the same mass ratio \(Cu:O\approx4:1\), matching formula \(CuO\) (63.5:16 ≈ 3.97:1).

2) Why was a reference atom needed for atomic masses?

Absolute atomic masses are tiny; relative scale simplifies comparison—now based on \(^{12}C=12\ \text{u}\).

3) Define molecular mass with two examples.

Sum of atomic masses: \(H_2SO_4=2(1)+32+4(16)=98\ \text{u}\); \(NaCl=23+35.5=58.5\ \text{u}\).

4) Write steps to form \(Na_2SO_4\).

\(Na^+\) (1+), \(SO_4^{2-}\) (2−) → cross valencies → \(Na_2SO_4\); already simplest.

5) Distinguish simple & composite radicals with examples.

Simple: single atom \(Na^+, Cl^-\). Composite: group \(NH_4^+, CO_3^{2-}\).

6) Define mole and relate to mass and particles.

\(n=m/M\); particles \(=nN_A\). One mole corresponds to molar mass in grams.

7) What is variable valency? Give two elements.

Element shows multiple stable ionic states: Fe(II/III), Cu(I/II), Hg(I/II).

8) Why do ionic names have two words?

First cation, second anion (e.g., sodium chloride); reflects ionic constituents.

9) Compute molecules in 66 g \(CO_2\).

\(n=66/44=1.5\ \text{mol}\Rightarrow 1.5N_A=9.033\times10^{23}\) molecules.

10) Show water ratio \(1:8\) by mass.

\(H_2O\): \(2\times1:16 \Rightarrow 2:16 = 1:8\).

11) Write formula of magnesium oxide by cross method.

\(Mg^{2+}\) and \(O^{2-}\) → \(MgO\).

12) What are nucleons and mass number?

Protons+neutrons; mass number \(A=p+n\).

13) How to deduce formula of aluminium hydroxide?

\(Al^{3+}\), \(OH^-\) → cross \(3:1\) → \(Al(OH)_3\).

14) Give reason: 1 mol of different substances have different masses.

Because molar mass \(M\) differs; mole fixes number of entities, not mass.

15) Define atomic radius in brief.

Distance from nucleus to outermost electron shell (≈ nm scale).

16) Write names for \(FeCl_2\) and \(FeCl_3\).

Iron(II) chloride (ferrous); Iron(III) chloride (ferric).

17) Derive formula of calcium phosphate.

\(Ca^{2+}\), \(PO_4^{3-}\) → cross → \(Ca_3(PO_4)_2\) (simplest 3:2).

18) Why does \(Na\) show valency 1?

Configuration (2,8,1): loses one electron to achieve octet → \(Na^+\).

19) Why are fractional atomic masses seen?

Because masses are relative to \(^{12}C\) and reflect isotopic averages.

20) Write the steps to compute molecular mass of \(KNO_3\).

Add atomic masses: \(39+14+3\times16=101\ \text{u}\).

6) 📘 Textbook Exercise Questions & Perfect Answers

1) Give examples (classification)

a) Positive radicals

\(Na^+, K^+, Ca^{2+}, NH_4^+, Cu^{2+}\).

b) Basic radicals

Same as positive radicals (cations): \(Na^+, NH_4^+, Mg^{2+}, Al^{3+}\).

c) Composite radicals

\(SO_4^{2-}, CO_3^{2-}, NO_3^{-}, NH_4^+\).

d) Metals with variable valency

Fe(II/III), Cu(I/II), Hg(I/II), Sn(II/IV).

e) Bivalent acidic radicals

\(SO_4^{2-}, CO_3^{2-}, SO_3^{2-}, CrO_4^{2-}, Cr_2O_7^{2-}\).

f) Trivalent basic radicals

\(Al^{3+}, Fe^{3+}, Cr^{3+}\).

2) Write symbols of elements and radicals obtained; indicate charge

Elements: Mercury, Potassium, Nitrogen, Copper, Sulphur, Carbon, Chlorine, Oxygen

Mercury: Hg → \(Hg^+\), \(Hg^{2+}\).
Potassium: K → \(K^+\).
Nitrogen: N → \(N^{3-}\) (nitride).
Copper: Cu → \(Cu^+\), \(Cu^{2+}\).
Sulphur: S → \(S^{2-}\) (sulphide).
Carbon: C → \(C^{4-}\) (carbide; rare), common composite \(CO_3^{2-}\).
Chlorine: Cl → \(Cl^-\).
Oxygen: O → \(O^{2-}\) (oxide).

3) Steps to deduce chemical formulae

Sodium sulphate (\(Na^+, SO_4^{2-}\))

Cross valencies \(1 \leftrightarrow 2\) → \(Na_2SO_4\).

Potassium nitrate (\(K^+, NO_3^-\))

Valencies 1 & 1 → \(KNO_3\).

Ferric phosphate (\(Fe^{3+}, PO_4^{3-}\))

3 & 3 → \(FePO_4\).

Calcium oxide (\(Ca^{2+}, O^{2-}\))

2 & 2 → simplify to \(CaO\).

Aluminium hydroxide (\(Al^{3+}, OH^-\))

3 & 1 → \(Al(OH)_3\).

4) Answer & explain

a) Explain how sodium is monovalent.

Na has (2,8,1); loses one electron to form \(Na^+\) → valency 1.

b) M is bivalent. Write steps to get formulae with sulphate and phosphate.

With \(SO_4^{2-}\): \(M^{2+}\) & \(SO_4^{2-}\) → \(MSO_4\).
With \(PO_4^{3-}\): Cross \(2\) & \(3\) → \(M_3(PO_4)_2\).

c) Need for a reference atom; two reference atoms.

Atomic masses are tiny; relative scale needed. Early: H = 1; modern: \(^{12}C=12\ \text{u}\).

d) What is Unified Atomic Mass?

Unit of atomic mass (u): \(1\ \text{u}=1/12\) of mass of a \(^{12}C\) atom.

e) Explain ‘mole’ with examples.

Amount containing \(N_A\) entities; \(18\ \text{g}\ H_2O=1\ \text{mol}\), \(44\ \text{g}\ CO_2=1\ \text{mol}\).

5) Names & molecular masses

Name and compute molecular mass for: \(Na_2SO_4, K_2CO_3, CO_2, MgCl_2, NaOH, AlPO_4, NaHCO_3\).

\(Na_2SO_4\) (Sodium sulphate): \(2\times23+32+4\times16=142\ \text{u}\).
\(K_2CO_3\) (Potassium carbonate): \(2\times39+12+3\times16=138\ \text{u}\).
\(CO_2\) (Carbon dioxide): \(12+2\times16=44\ \text{u}\).
\(MgCl_2\) (Magnesium chloride): \(24+2\times35.5=95\ \text{u}\).
\(NaOH\) (Sodium hydroxide): \(23+16+1=40\ \text{u}\).
\(AlPO_4\) (Aluminium phosphate): \(27+31+4\times16=122\ \text{u}\).
\(NaHCO_3\) (Sodium bicarbonate): \(23+1+12+3\times16=84\ \text{u}\).

6) Slaked lime samples m & n

Which law is proved by given data and how?

Law of constant proportion. For m: \(Ca:O=5:2=2.5\). For n: \(1.0:0.4=2.5\). Same fixed mass ratio in both samples ⇒ constant composition of the compound.

7) Number of molecules in given quantities

Find molecules in: 32 g \(O_2\); 90 g water; 8.8 g \(CO_2\); 7.1 g chlorine (\(Cl_2\)).

\(O_2\): \(M=32\Rightarrow n=32/32=1\) ⇒ molecules \(=N_A\).
\(H_2O\): \(M=18\Rightarrow n=90/18=5\) ⇒ molecules \(=5N_A\).
\(CO_2\): \(M=44\Rightarrow n=8.8/44=0.2\) ⇒ molecules \(=0.2N_A=1.2044\times10^{23}\).
\(Cl_2\): \(M\approx71\Rightarrow n=7.1/71=0.1\) ⇒ molecules \(=0.1N_A=6.022\times10^{22}\).

8) Mass needed for 0.2 mol

If \(0.2\ \text{mol}\) is required, how many grams of each?

\(NaCl\) (\(M=58.5\)): \(m=nM=0.2\times58.5=11.7\ \text{g}\).
\(MgO\) (\(M=24+16=40\)): \(m=0.2\times40=8\ \text{g}\).
\(CaCO_3\) (\(M=40+12+48=100\)): \(m=0.2\times100=20\ \text{g}\).

9) Extra Mole & Formula Practice (MathJax)

Compute molecular mass of \(HNO_3\) and \(Ca(OH)_2\).

\(HNO_3: 1+14+3\times16=63\ \text{u}\).
\(Ca(OH)_2: 40+2(16+1)=74\ \text{u}\).

Molecules in \(36\ \text{g}\) water (show steps).

\(\displaystyle n=\frac{m}{M}=\frac{36}{18}=2\ \text{mol};\quad N=2N_A=1.2044\times10^{24}\ \text{molecules}.\)

Colourful Smart Notes Ready — All questions in red & answers in green, equations via MathJax.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top