9. Carbon compounds​

9. Carbon Compounds

Coverage: Bonds in carbon compounds Hydrocarbons Functional groups Homologous series Carbon: a versatile element IUPAC nomenclature Chemical properties Macromolecules & Polymers

1) Bonds in Carbon Compounds

  • Most carbon compounds are covalent (share electrons) → low melting/boiling points (often < 300 °C) and poor electrical conductors (no free ions in solid or solution).
  • Why covalent? Carbon is \(Z=6\), configuration \(1s^2\,2s^2\,2p^2\) \(\Rightarrow\) valency 4. Forming \( \mathrm{C^{4+}} \) or \( \mathrm{C^{4-}} \) is highly unstable; instead, carbon completes octet by sharing electrons.
Electron-dot & line ideas (representative):
\( \mathrm{H{:}H}\;\) (H–H, single bond), \(\ \mathrm{O{::}O}\;\) (O=O, double), \(\ \mathrm{N{\cdots}N}\;\) (N≡N, triple).
Methane: \(\ \mathrm{CH_4}\) (C forms 4 single covalent bonds).

2) Carbon: A Versatile Element

Catenation

Carbon–carbon bonds are strong → long chains, branched chains, and rings (cyclic). This builds molecules from tiny methane to giant DNA.

Multiple bonding

Carbon atoms form C–C, C=C, and C≡C bonds → more structures (e.g., ethane, ethene, ethyne).

Tetravalency

One carbon bonds with four atoms (H, O, N, halogens, S, P…), creating immense variety.

Isomerism

Same molecular formula, different structures (e.g., C\(_4\)H\(_{10}\): n-butane & isobutane) → different properties.

3) Hydrocarbons, Saturation & Structures

Saturated vs Unsaturated

  • Alkanes (saturated, C–C only): methane, ethane, propane…
  • Alkenes (unsaturated, one C=C): ethene, propene…
  • Alkynes (unsaturated, one C≡C): ethyne, propyne…

Carbon Skeletons

  • Straight-chain: CH\(_3\)–CH\(_2\)–CH\(_2\)–CH\(_3\) (butane)
  • Branched-chain: isobutane (2-methylpropane)
  • Cyclic: cyclohexane (C\(_6\)H\(_{12}\)), benzene (C\(_6\)H\(_6\)) (aromatic)
TypeExampleNotes
Straight AlkanePropane: CH\(_3\)–CH\(_2\)–CH\(_3\)Saturated, less reactive
AlkenePropene: CH\(_3\)–CH=CH\(_2\)Unsaturated, addition reactions
AlkyneEthyne: HC≡CHUnsaturated, addition reactions
CyclicCyclohexeneRing with a C=C
AromaticBenzeneAlternate π-bonds; special stability

4) Functional Groups & Hetero Atoms

Replacing H in a hydrocarbon by specific atoms/groups gives characteristic chemistry. These are functional groups.

FamilyGroupCondensed formExample (name)
Halides–X (Cl/Br/I)–Cl, –Br, –ICH\(_3\)–Cl (chloro-methane)
Alcohol–OH–OHCH\(_3\)–CH\(_2\)–OH (ethanol)
Aldehyde–CHO–CHOCH\(_3\)–CHO (ethanal)
Ketone–CO––CO–CH\(_3\)–CO–CH\(_3\) (propanone)
Carboxylic acid–COOH–COOHCH\(_3\)–COOH (ethanoic acid)
Ether–O––O–CH\(_3\)–O–CH\(_3\) (dimethyl ether)
Ester–COO––COO–CH\(_3\)–COO–CH\(_2\)CH\(_3\) (ethyl ethanoate)
Amine–NH\(_2\)–NH\(_2\)CH\(_3\)–NH\(_2\) (methanamine)
Multiple bondsC=C, C≡CAlkenes/Alkynes

5) Homologous Series

  • Members differ by one methylene unit (–CH\(_2\)–) → molecular mass increases by 14 u each step.
  • General formulas:
    Alkanes: \( \mathrm{C_nH_{2n+2}} \quad (n\ge 1)\)   |   Alkenes: \( \mathrm{C_nH_{2n}} \quad (n\ge 2)\)   |   Alkynes: \( \mathrm{C_nH_{2n-2}} \quad (n\ge 2)\)
  • Similar chemical properties (same functional group), gradual change in physical properties (e.g., boiling point rises with chain length).
Series1st2nd3rd4th
AlkanesCH\(_4\)C\(_2\)H\(_6\)C\(_3\)H\(_8\)C\(_4\)H\(_{10}\)
AlkenesC\(_2\)H\(_4\)C\(_3\)H\(_6\)C\(_4\)H\(_8\)
AlcoholsCH\(_3\)–OHCH\(_3\)CH\(_2\)–OHCH\(_3\)CH\(_2\)CH\(_2\)–OHCH\(_3\)(CH\(_2\))\(_3\)–OH

6) Nomenclature of Carbon Compounds (IUPAC)

Format: prefix – parent – suffix. Parent is longest chain alkane; suffix from functional group; prefix for substituents (e.g., halogens). Number the chain to give the lowest locant to the functional group/multiple bond.

Structural ideaParentSuffix / PrefixIUPAC name
CH\(_3\)–CH\(_2\)–OHethane–ol (alcohol)ethanol
CH\(_3\)–CH\(_2\)–Clethanechloro– (halo)chloroethane
CH\(_3\)–CHOethane–al (aldehyde)ethanal
CH\(_3\)–COOHethane–oic acidethanoic acid
CH\(_3\)–CO–CH\(_3\)propane–one (ketone)propan-2-one (acetone)
CH\(_3\)–CH=CH\(_2\)prop––eneprop-1-ene (propene)
For –CHO / –COOH, numbering starts at the functional carbon by rule.

7) Chemical Properties of Carbon Compounds

A) Combustion

\( \mathrm{C + O_2 \rightarrow CO_2 + heat + light} \)
\( \mathrm{CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + heat} \)
\( \mathrm{C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O + heat} \)
  • Saturated compounds generally burn with blue, non-sooty flame (adequate O\(_2\)).
  • Unsaturated/aromatic often give yellow, sooty flames (higher C content, incomplete burning).

B) Oxidation

Oxidising agents like alkaline \( \mathrm{KMnO_4} \) or \( \mathrm{K_2Cr_2O_7} \) convert alcohols to acids (under appropriate conditions).

\( \mathrm{CH_3CH_2OH \xrightarrow[\text{alk.}]{[O]} CH_3COOH} \)

C) Addition (Unsaturated → Saturated)

  • Halogen addition: Decolourisation of Br\(_2\)/I\(_2\) solution is a test for C=C/C≡C.
  • Hydrogenation: \( \mathrm{C=C + H_2 \xrightarrow{Pt/Ni} C-C} \) (used to make vanaspati from vegetable oils).

D) Substitution (Alkanes)

In presence of sunlight, Cl\(_2\) replaces H in alkanes (stepwise):

\( \mathrm{CH_4 + Cl_2 \xrightarrow{h\nu} CH_3Cl + HCl \rightarrow CH_2Cl_2 \rightarrow CHCl_3 \rightarrow CCl_4} \)

8) Two Important Compounds: Ethanol & Ethanoic Acid

Ethanol (C\(_2\)H\(_5\)OH)

  • Colourless liquid, b.p. \(78^\circ\)C; miscible with water; neutral to litmus.
  • Used as solvent, in medicines (e.g., tincture iodine). Denatured by adding methanol + dye for safety.

Key Reactions

With Na: \( \mathrm{2Na + 2C_2H_5OH \rightarrow 2C_2H_5ONa + H_2\uparrow} \) (sodium ethoxide + H\(_2\))
Dehydration: \( \mathrm{C_2H_5OH \xrightarrow[170^\circ C]{conc.\ H_2SO_4} C_2H_4 + H_2O} \)
Alcohol as fuel: Fermentation of molasses gives ethanol. Blended with petrol (gasohol) for cleaner burning.

Ethanoic Acid (CH\(_3\)COOH)

  • Common name: acetic acid; b.p. \(118^\circ\)C; 5–8% solution = vinegar.
  • m.p. \(16.7^\circ\)C → freezes in cold climates (“glacial acetic acid”). Turns blue litmus red; weaker than strong mineral acids.

Key Reactions

Neutralisation: \( \mathrm{CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O} \)
With carbonates/bicarbonates: \( \mathrm{2CH_3COOH + Na_2CO_3 \rightarrow 2CH_3COONa + H_2O + CO_2\uparrow} \)
Test: CO\(_2\) turns limewater milky.

Esterification: \( \mathrm{CH_3COOH + C_2H_5OH \xrightarrow{conc.\ H_2SO_4} CH_3COOC_2H_5 + H_2O} \) (sweet-smelling ester)
Saponification: Ester \(+\ \mathrm{NaOH}\ \rightarrow\) sodium carboxylate \(+\) alcohol

9) Macromolecules & Polymers

Macromolecules are giant molecules (molar mass up to \(10^{12}\)) made by repetitive small units.

  • Natural: Starch/cellulose (polysaccharides), proteins (from α-amino acids), nucleic acids (DNA/RNA), natural rubber (isoprene).
  • Man-made: Plastics, fibres, elastomers.

Polymerization

Addition polymerization example: \( \displaystyle n\,\mathrm{CH_2{=}CH_2} \ \rightarrow\ \left(\mathrm{CH_2{-}CH_2}\right)_n \) (polyethylene)
PolymerMonomerTypical Uses
Polyethylene (PE)EtheneCarry bags, films, sportswear
Polystyrene (PS)StyreneThermocol, packaging
Polyvinyl chloride (PVC)Vinyl chloridePipes, cables, medical bags
Polyacrylonitrile (PAN)AcrylonitrileWool-like fibres, blankets
Teflon (PTFE)TetrafluoroetheneNon-stick cookware
Polypropylene (PP)PropeneSyringes, furniture
Homopolymers use a single monomer (PE, PP); copolymers use two or more (e.g., PET: polyethylene terephthalate).

Quick Recall & Handy Facts

  • Unsaturated compounds decolourise bromine/iodine; saturated do not (under same conditions).
  • Brighter, clean blue flame → adequate oxygen; yellow, sooty → incomplete combustion / high C content.
  • Homologous series: add –CH\(_2\)– each step; chemical behaviour similar; physical properties show gradation.
  • IUPAC names: choose the longest chain, lowest locants, correct suffix (–ol, –al, –one, –oic acid), prefixes for substituents.
  • Esterification ↔ saponification are reversible in concept (acidic forward, basic cleavage).

Chapter 9 — Carbon Compounds: Exercise Solutions

1) Match the pairs

Group ACorrect match (Group B)Explanation
a. C2H6 3. Saturated hydrocarbon Ethane has only single C–C bonds (alkane).
b. C2H2 4. Triple bond Ethyne (acetylene) contains C≡C and is unsaturated.
c. CH4O 2. Molecular formula of an alcohol CH4O corresponds to methanol (CH3OH).
d. C3H6 1. Unsaturated hydrocarbon Could be propene (C=C) or cyclopropane; presence of unsaturation/ring reduces H count.
Final mapping: a–3, b–4, c–2, d–1.

2) Electron-dot structures (without circles)

a) Methane (CH4)

        H
        |
    H — C — H
        |
        H
    (Each C–H bond = shared pair of electrons ••)
    

b) Ethene (C2H4)

    H   H
     \ /
      C = C
     / \
    H   H
    (C=C has two shared pairs)
    

c) Methanol (CH3OH)

        H
        |
    H — C — O — H
        |
        H
    (O also has two lone pairs •• •• not shown here for simplicity)
    

d) Water (H2O)

        ..
    H — O — H
        ..
    (Two lone pairs on O shown as "..")
    

3) All possible structural formulae

a) C3H8 (Propane)

CH3 — CH2 — CH3

b) C4H10 (Butane isomers)

n-Butane:        CH3 — CH2 — CH2 — CH3
Isobutane (2-methylpropane): 
                  CH3
                   |
              CH3 — C — H
                   |
                  CH3
    

c) C3H4 (Major acyclic isomers)

Propyne (methylacetylene):     CH3 — C ≡ CH
Propadiene (allene):           CH2 = C = CH2
    
(Note: A cyclic option, cyclopropene, also has formula C3H4, but at this level acyclic isomers above are typically expected.)

4) Short notes / definitions with examples

  • a) Structural isomerism: Same molecular formula, different structural formulae. Example: C4H10 → n-butane & isobutane.
  • b) Covalent bond: Bond formed by sharing of electron pairs. Example: O–H in water, C–H in methane.
  • c) Hetero atom: Any atom other than C/H in an organic molecule. Example: O in ethanol (CH3CH2OH).
  • d) Functional group: Specific atom/group imparting characteristic reactions. Example: –OH (alcohol) in ethanol.
  • e) Alkane: Saturated hydrocarbon, general formula \( \mathrm{C_nH_{2n+2}} \). Example: propane (C3H8).
  • f) Unsaturated hydrocarbon: Contains C=C and/or C≡C. Example: ethene (C2H4), ethyne (C2H2).
  • g) Homopolymer: Polymer from a single monomer. Example: Polyethylene from ethene.
  • h) Monomer: Small unit that repeats to form a polymer. Example: Styrene → polystyrene.
  • i) Reduction: Gain of e/H or loss of O. Example: \( \mathrm{C_2H_4 + H_2 \xrightarrow{Ni} C_2H_6} \) (hydrogenation).
  • j) Oxidant (oxidising agent): Substance that causes oxidation (accepts e). Example: Alkaline \( \mathrm{KMnO_4} \) oxidises ethanol to ethanoic acid.

Use Your Brain Power

1) Write the homopolymer structures from the given monomers

Assuming common Class-10 monomers:
(a) Propene: \( \mathrm{CH_2{=}CH{-}CH_3} \) → Polypropylene: \( \mathrm{[-CH_2-CH(CH_3)-]_n} \)
(b) Acrylonitrile: \( \mathrm{CH_2{=}CH{-}CN} \) → Polyacrylonitrile (PAN): \( \mathrm{[-CH_2-CH(CN)-]_n} \)

2) Polyvinyl acetate → find the monomer

Poly(vinyl acetate): \( \mathrm{[-CH_2-CH(OCOCH_3)-]_n} \)
Monomer: Vinyl acetate \( \mathrm{CH_2{=}CH{-}O{-}C(=O)CH_3} \)

5) IUPAC names

  1. a) CH3–CH2–CH2–CH3butane
  2. b) CH3–CHOH–CH3propan-2-ol
  3. c) CH3–CH2–COOH → propanoic acid
  4. d) CH3–CH2–NH2ethanamine
  5. e) CH3–CHO → ethanal
  6. f) CH3–CO–CH2–CH3butan-2-one (butanone)

6) Identify the reaction type

  1. a) CH3–CH2–CH2–OH ⟶ CH3–CH2–COOH → Oxidation (alcohol → acid)
  2. b) CH3–CH2–CH3 ⟶ 3CO2 + 4H2O → Complete combustion
  3. c) CH3–CH=CH–CH3 + Br2 ⟶ CH3–CHBr–CHBr–CH3Addition (halogenation)
  4. d) CH3–CH3 + Cl2 ⟶ CH3–CH2–Cl + HCl → Substitution (free-radical chlorination)
  5. e) CH3–CH2–CH2–CH2–OH ⟶ CH3–CH2–CH=CH2 + H2O → Elimination / Dehydration
  6. f) CH3–CH2–COOH + NaOH ⟶ CH3–CH2–COO⁻Na⁺ + H2O → Neutralisation (salt formation)
  7. g) CH3–COOH + CH3–OH ⟶ CH3–COO–CH3 + H2O → Esterification (condensation)

7) Draw structural formulae for these IUPAC names

a) pentan-2-one: \( \mathrm{CH_3{-}CO{-}CH_2{-}CH_2{-}CH_3} \)
b) 2-chlorobutane: \( \mathrm{CH_3{-}CH(Cl){-}CH_2{-}CH_3} \)
c) propan-2-ol: \( \mathrm{CH_3{-}CH(OH){-}CH_3} \)
d) methanal: \( \mathrm{H{-}CHO} \)
e) butanoic acid: \( \mathrm{CH_3{-}CH_2{-}CH_2{-}COOH} \)
f) 1-bromopropane: \( \mathrm{CH_3{-}CH_2{-}CH_2{-}Br} \)
g) ethanamine: \( \mathrm{CH_3{-}CH_2{-}NH_2} \)
h) butanone (butan-2-one): \( \mathrm{CH_3{-}CO{-}CH_2{-}CH_3} \)

8) Answer in brief

  1. a) Why so many carbon compounds? Due to catenation (C–C chains/rings), tetravalency, ability to form single/double/triple bonds, strong bonds with many hetero atoms (O, N, S, halogens), and isomerism.
  2. b) Types of saturated hydrocarbons (with one example each)
    • Straight-chain alkanes: e.g., propane (CH3–CH2–CH3).
    • Branched-chain alkanes: e.g., isobutane (2-methylpropane).
    • Cycloalkanes: e.g., cyclohexane (C6H12).
  3. c) Any four O-containing functional groups (name, formula & example)
    • Alcohol –OH: ethanol, CH3CH2OH
    • Aldehyde –CHO: ethanal, CH3CHO
    • Ketone >C=O: propanone, CH3COCH3
    • Carboxylic acid –COOH: ethanoic acid, CH3COOH
    • (Also valid: Ether –O–, e.g., CH3–O–CH3; Ester –COO–, e.g., CH3COOCH2CH3)
  4. d) Three functional groups with different hetero atoms (name, formula & example)
    • Halide (Cl/Br/I): –Cl; chloroethane, CH3CH2Cl
    • Amine (N): –NH2; ethanamine, CH3CH2NH2
    • Nitrile (N): –C≡N; propanenitrile, CH3CH2–C≡N
  5. e) Three natural polymers: occurrence & monomers
    PolymerPlace of occurrenceMonomer(s)
    StarchSeeds/tubers (plants)Glucose (α-D-glucose units)
    CelluloseWood; plant cell wallsGlucose (β-D-glucose units)
    ProteinsMuscles, enzymes, skin, etc.α-Amino acids
  6. f) What are vinegar and gasohol? Uses.
    • Vinegar: 5–8% aqueous solution of ethanoic (acetic) acid. Uses: food preservative, flavouring, cleaning.
    • Gasohol: Petrol blended with ethanol (alcohol). Uses: cleaner fuel; improves combustion; reduces emissions.
  7. g) What is a catalyst? One catalysed reaction.
    A catalyst changes the rate of a reaction without being consumed.
    Example (hydrogenation): \( \mathrm{R{-}CH{=}CH{-}R' + H_2 \xrightarrow{Ni/Pt} R{-}CH_2{-}CH_2{-}R'} \) Ni/Pt catalyst
    (Vegetable oil → vanaspati ghee)

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top