9. Carbon Compounds
Coverage: Bonds in carbon compounds Hydrocarbons Functional groups Homologous series Carbon: a versatile element IUPAC nomenclature Chemical properties Macromolecules & Polymers
1) Bonds in Carbon Compounds
- Most carbon compounds are covalent (share electrons) → low melting/boiling points (often < 300 °C) and poor electrical conductors (no free ions in solid or solution).
- Why covalent? Carbon is \(Z=6\), configuration \(1s^2\,2s^2\,2p^2\) \(\Rightarrow\) valency 4. Forming \( \mathrm{C^{4+}} \) or \( \mathrm{C^{4-}} \) is highly unstable; instead, carbon completes octet by sharing electrons.
\( \mathrm{H{:}H}\;\) (H–H, single bond), \(\ \mathrm{O{::}O}\;\) (O=O, double), \(\ \mathrm{N{\cdots}N}\;\) (N≡N, triple).
Methane: \(\ \mathrm{CH_4}\) (C forms 4 single covalent bonds).
2) Carbon: A Versatile Element
Catenation
Carbon–carbon bonds are strong → long chains, branched chains, and rings (cyclic). This builds molecules from tiny methane to giant DNA.
Multiple bonding
Carbon atoms form C–C, C=C, and C≡C bonds → more structures (e.g., ethane, ethene, ethyne).
Tetravalency
One carbon bonds with four atoms (H, O, N, halogens, S, P…), creating immense variety.
Isomerism
Same molecular formula, different structures (e.g., C\(_4\)H\(_{10}\): n-butane & isobutane) → different properties.
3) Hydrocarbons, Saturation & Structures
Saturated vs Unsaturated
- Alkanes (saturated, C–C only): methane, ethane, propane…
- Alkenes (unsaturated, one C=C): ethene, propene…
- Alkynes (unsaturated, one C≡C): ethyne, propyne…
Carbon Skeletons
- Straight-chain: CH\(_3\)–CH\(_2\)–CH\(_2\)–CH\(_3\) (butane)
- Branched-chain: isobutane (2-methylpropane)
- Cyclic: cyclohexane (C\(_6\)H\(_{12}\)), benzene (C\(_6\)H\(_6\)) (aromatic)
| Type | Example | Notes |
|---|---|---|
| Straight Alkane | Propane: CH\(_3\)–CH\(_2\)–CH\(_3\) | Saturated, less reactive |
| Alkene | Propene: CH\(_3\)–CH=CH\(_2\) | Unsaturated, addition reactions |
| Alkyne | Ethyne: HC≡CH | Unsaturated, addition reactions |
| Cyclic | Cyclohexene | Ring with a C=C |
| Aromatic | Benzene | Alternate π-bonds; special stability |
4) Functional Groups & Hetero Atoms
Replacing H in a hydrocarbon by specific atoms/groups gives characteristic chemistry. These are functional groups.
| Family | Group | Condensed form | Example (name) |
|---|---|---|---|
| Halides | –X (Cl/Br/I) | –Cl, –Br, –I | CH\(_3\)–Cl (chloro-methane) |
| Alcohol | –OH | –OH | CH\(_3\)–CH\(_2\)–OH (ethanol) |
| Aldehyde | –CHO | –CHO | CH\(_3\)–CHO (ethanal) |
| Ketone | –CO– | –CO– | CH\(_3\)–CO–CH\(_3\) (propanone) |
| Carboxylic acid | –COOH | –COOH | CH\(_3\)–COOH (ethanoic acid) |
| Ether | –O– | –O– | CH\(_3\)–O–CH\(_3\) (dimethyl ether) |
| Ester | –COO– | –COO– | CH\(_3\)–COO–CH\(_2\)CH\(_3\) (ethyl ethanoate) |
| Amine | –NH\(_2\) | –NH\(_2\) | CH\(_3\)–NH\(_2\) (methanamine) |
| Multiple bonds | C=C, C≡C | — | Alkenes/Alkynes |
5) Homologous Series
- Members differ by one methylene unit (–CH\(_2\)–) → molecular mass increases by 14 u each step.
- General formulas:
Alkanes: \( \mathrm{C_nH_{2n+2}} \quad (n\ge 1)\) | Alkenes: \( \mathrm{C_nH_{2n}} \quad (n\ge 2)\) | Alkynes: \( \mathrm{C_nH_{2n-2}} \quad (n\ge 2)\)
- Similar chemical properties (same functional group), gradual change in physical properties (e.g., boiling point rises with chain length).
| Series | 1st | 2nd | 3rd | 4th |
|---|---|---|---|---|
| Alkanes | CH\(_4\) | C\(_2\)H\(_6\) | C\(_3\)H\(_8\) | C\(_4\)H\(_{10}\) |
| Alkenes | — | C\(_2\)H\(_4\) | C\(_3\)H\(_6\) | C\(_4\)H\(_8\) |
| Alcohols | CH\(_3\)–OH | CH\(_3\)CH\(_2\)–OH | CH\(_3\)CH\(_2\)CH\(_2\)–OH | CH\(_3\)(CH\(_2\))\(_3\)–OH |
6) Nomenclature of Carbon Compounds (IUPAC)
Format: prefix – parent – suffix. Parent is longest chain alkane; suffix from functional group; prefix for substituents (e.g., halogens). Number the chain to give the lowest locant to the functional group/multiple bond.
| Structural idea | Parent | Suffix / Prefix | IUPAC name |
|---|---|---|---|
| CH\(_3\)–CH\(_2\)–OH | ethane | –ol (alcohol) | ethanol |
| CH\(_3\)–CH\(_2\)–Cl | ethane | chloro– (halo) | chloroethane |
| CH\(_3\)–CHO | ethane | –al (aldehyde) | ethanal |
| CH\(_3\)–COOH | ethane | –oic acid | ethanoic acid |
| CH\(_3\)–CO–CH\(_3\) | propane | –one (ketone) | propan-2-one (acetone) |
| CH\(_3\)–CH=CH\(_2\) | prop– | –ene | prop-1-ene (propene) |
7) Chemical Properties of Carbon Compounds
A) Combustion
\( \mathrm{CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + heat} \)
\( \mathrm{C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O + heat} \)
- Saturated compounds generally burn with blue, non-sooty flame (adequate O\(_2\)).
- Unsaturated/aromatic often give yellow, sooty flames (higher C content, incomplete burning).
B) Oxidation
Oxidising agents like alkaline \( \mathrm{KMnO_4} \) or \( \mathrm{K_2Cr_2O_7} \) convert alcohols to acids (under appropriate conditions).
C) Addition (Unsaturated → Saturated)
- Halogen addition: Decolourisation of Br\(_2\)/I\(_2\) solution is a test for C=C/C≡C.
- Hydrogenation: \( \mathrm{C=C + H_2 \xrightarrow{Pt/Ni} C-C} \) (used to make vanaspati from vegetable oils).
D) Substitution (Alkanes)
In presence of sunlight, Cl\(_2\) replaces H in alkanes (stepwise):
8) Two Important Compounds: Ethanol & Ethanoic Acid
Ethanol (C\(_2\)H\(_5\)OH)
- Colourless liquid, b.p. \(78^\circ\)C; miscible with water; neutral to litmus.
- Used as solvent, in medicines (e.g., tincture iodine). Denatured by adding methanol + dye for safety.
Key Reactions
Dehydration: \( \mathrm{C_2H_5OH \xrightarrow[170^\circ C]{conc.\ H_2SO_4} C_2H_4 + H_2O} \)
Ethanoic Acid (CH\(_3\)COOH)
- Common name: acetic acid; b.p. \(118^\circ\)C; 5–8% solution = vinegar.
- m.p. \(16.7^\circ\)C → freezes in cold climates (“glacial acetic acid”). Turns blue litmus red; weaker than strong mineral acids.
Key Reactions
With carbonates/bicarbonates: \( \mathrm{2CH_3COOH + Na_2CO_3 \rightarrow 2CH_3COONa + H_2O + CO_2\uparrow} \)
Test: CO\(_2\) turns limewater milky.
Esterification: \( \mathrm{CH_3COOH + C_2H_5OH \xrightarrow{conc.\ H_2SO_4} CH_3COOC_2H_5 + H_2O} \) (sweet-smelling ester)
Saponification: Ester \(+\ \mathrm{NaOH}\ \rightarrow\) sodium carboxylate \(+\) alcohol
9) Macromolecules & Polymers
Macromolecules are giant molecules (molar mass up to \(10^{12}\)) made by repetitive small units.
- Natural: Starch/cellulose (polysaccharides), proteins (from α-amino acids), nucleic acids (DNA/RNA), natural rubber (isoprene).
- Man-made: Plastics, fibres, elastomers.
Polymerization
| Polymer | Monomer | Typical Uses |
|---|---|---|
| Polyethylene (PE) | Ethene | Carry bags, films, sportswear |
| Polystyrene (PS) | Styrene | Thermocol, packaging |
| Polyvinyl chloride (PVC) | Vinyl chloride | Pipes, cables, medical bags |
| Polyacrylonitrile (PAN) | Acrylonitrile | Wool-like fibres, blankets |
| Teflon (PTFE) | Tetrafluoroethene | Non-stick cookware |
| Polypropylene (PP) | Propene | Syringes, furniture |
Quick Recall & Handy Facts
- Unsaturated compounds decolourise bromine/iodine; saturated do not (under same conditions).
- Brighter, clean blue flame → adequate oxygen; yellow, sooty → incomplete combustion / high C content.
- Homologous series: add –CH\(_2\)– each step; chemical behaviour similar; physical properties show gradation.
- IUPAC names: choose the longest chain, lowest locants, correct suffix (–ol, –al, –one, –oic acid), prefixes for substituents.
- Esterification ↔ saponification are reversible in concept (acidic forward, basic cleavage).
Chapter 9 — Carbon Compounds: Exercise Solutions
1) Match the pairs
| Group A | Correct match (Group B) | Explanation |
|---|---|---|
| a. C2H6 | 3. Saturated hydrocarbon | Ethane has only single C–C bonds (alkane). |
| b. C2H2 | 4. Triple bond | Ethyne (acetylene) contains C≡C and is unsaturated. |
| c. CH4O | 2. Molecular formula of an alcohol | CH4O corresponds to methanol (CH3OH). |
| d. C3H6 | 1. Unsaturated hydrocarbon | Could be propene (C=C) or cyclopropane; presence of unsaturation/ring reduces H count. |
2) Electron-dot structures (without circles)
a) Methane (CH4)
H
|
H — C — H
|
H
(Each C–H bond = shared pair of electrons ••)
b) Ethene (C2H4)
H H
\ /
C = C
/ \
H H
(C=C has two shared pairs)
c) Methanol (CH3OH)
H
|
H — C — O — H
|
H
(O also has two lone pairs •• •• not shown here for simplicity)
d) Water (H2O)
..
H — O — H
..
(Two lone pairs on O shown as "..")
3) All possible structural formulae
a) C3H8 (Propane)
CH3 — CH2 — CH3
b) C4H10 (Butane isomers)
n-Butane: CH3 — CH2 — CH2 — CH3
Isobutane (2-methylpropane):
CH3
|
CH3 — C — H
|
CH3
c) C3H4 (Major acyclic isomers)
Propyne (methylacetylene): CH3 — C ≡ CH
Propadiene (allene): CH2 = C = CH2
4) Short notes / definitions with examples
- a) Structural isomerism: Same molecular formula, different structural formulae. Example: C4H10 → n-butane & isobutane.
- b) Covalent bond: Bond formed by sharing of electron pairs. Example: O–H in water, C–H in methane.
- c) Hetero atom: Any atom other than C/H in an organic molecule. Example: O in ethanol (CH3CH2OH).
- d) Functional group: Specific atom/group imparting characteristic reactions. Example: –OH (alcohol) in ethanol.
- e) Alkane: Saturated hydrocarbon, general formula \( \mathrm{C_nH_{2n+2}} \). Example: propane (C3H8).
- f) Unsaturated hydrocarbon: Contains C=C and/or C≡C. Example: ethene (C2H4), ethyne (C2H2).
- g) Homopolymer: Polymer from a single monomer. Example: Polyethylene from ethene.
- h) Monomer: Small unit that repeats to form a polymer. Example: Styrene → polystyrene.
- i) Reduction: Gain of e−/H or loss of O. Example: \( \mathrm{C_2H_4 + H_2 \xrightarrow{Ni} C_2H_6} \) (hydrogenation).
- j) Oxidant (oxidising agent): Substance that causes oxidation (accepts e−). Example: Alkaline \( \mathrm{KMnO_4} \) oxidises ethanol to ethanoic acid.
Use Your Brain Power
1) Write the homopolymer structures from the given monomers
(a) Propene: \( \mathrm{CH_2{=}CH{-}CH_3} \) → Polypropylene: \( \mathrm{[-CH_2-CH(CH_3)-]_n} \)
(b) Acrylonitrile: \( \mathrm{CH_2{=}CH{-}CN} \) → Polyacrylonitrile (PAN): \( \mathrm{[-CH_2-CH(CN)-]_n} \)
2) Polyvinyl acetate → find the monomer
Monomer: Vinyl acetate \( \mathrm{CH_2{=}CH{-}O{-}C(=O)CH_3} \)
5) IUPAC names
- a) CH3–CH2–CH2–CH3 → butane
- b) CH3–CHOH–CH3 → propan-2-ol
- c) CH3–CH2–COOH → propanoic acid
- d) CH3–CH2–NH2 → ethanamine
- e) CH3–CHO → ethanal
- f) CH3–CO–CH2–CH3 → butan-2-one (butanone)
6) Identify the reaction type
- a) CH3–CH2–CH2–OH ⟶ CH3–CH2–COOH → Oxidation (alcohol → acid)
- b) CH3–CH2–CH3 ⟶ 3CO2 + 4H2O → Complete combustion
- c) CH3–CH=CH–CH3 + Br2 ⟶ CH3–CHBr–CHBr–CH3 → Addition (halogenation)
- d) CH3–CH3 + Cl2 ⟶ CH3–CH2–Cl + HCl → Substitution (free-radical chlorination)
- e) CH3–CH2–CH2–CH2–OH ⟶ CH3–CH2–CH=CH2 + H2O → Elimination / Dehydration
- f) CH3–CH2–COOH + NaOH ⟶ CH3–CH2–COO⁻Na⁺ + H2O → Neutralisation (salt formation)
- g) CH3–COOH + CH3–OH ⟶ CH3–COO–CH3 + H2O → Esterification (condensation)
7) Draw structural formulae for these IUPAC names
b) 2-chlorobutane: \( \mathrm{CH_3{-}CH(Cl){-}CH_2{-}CH_3} \)
c) propan-2-ol: \( \mathrm{CH_3{-}CH(OH){-}CH_3} \)
d) methanal: \( \mathrm{H{-}CHO} \)
e) butanoic acid: \( \mathrm{CH_3{-}CH_2{-}CH_2{-}COOH} \)
f) 1-bromopropane: \( \mathrm{CH_3{-}CH_2{-}CH_2{-}Br} \)
g) ethanamine: \( \mathrm{CH_3{-}CH_2{-}NH_2} \)
h) butanone (butan-2-one): \( \mathrm{CH_3{-}CO{-}CH_2{-}CH_3} \)
8) Answer in brief
- a) Why so many carbon compounds? Due to catenation (C–C chains/rings), tetravalency, ability to form single/double/triple bonds, strong bonds with many hetero atoms (O, N, S, halogens), and isomerism.
- b) Types of saturated hydrocarbons (with one example each)
- Straight-chain alkanes: e.g., propane (CH3–CH2–CH3).
- Branched-chain alkanes: e.g., isobutane (2-methylpropane).
- Cycloalkanes: e.g., cyclohexane (C6H12).
- c) Any four O-containing functional groups (name, formula & example)
- Alcohol –OH: ethanol, CH3CH2OH
- Aldehyde –CHO: ethanal, CH3CHO
- Ketone >C=O: propanone, CH3COCH3
- Carboxylic acid –COOH: ethanoic acid, CH3COOH
- (Also valid: Ether –O–, e.g., CH3–O–CH3; Ester –COO–, e.g., CH3COOCH2CH3)
- d) Three functional groups with different hetero atoms (name, formula & example)
- Halide (Cl/Br/I): –Cl; chloroethane, CH3CH2Cl
- Amine (N): –NH2; ethanamine, CH3CH2NH2
- Nitrile (N): –C≡N; propanenitrile, CH3CH2–C≡N
- e) Three natural polymers: occurrence & monomers
Polymer Place of occurrence Monomer(s) Starch Seeds/tubers (plants) Glucose (α-D-glucose units) Cellulose Wood; plant cell walls Glucose (β-D-glucose units) Proteins Muscles, enzymes, skin, etc. α-Amino acids - f) What are vinegar and gasohol? Uses.
- Vinegar: 5–8% aqueous solution of ethanoic (acetic) acid. Uses: food preservative, flavouring, cleaning.
- Gasohol: Petrol blended with ethanol (alcohol). Uses: cleaner fuel; improves combustion; reduces emissions.
- g) What is a catalyst? One catalysed reaction.
A catalyst changes the rate of a reaction without being consumed.Example (hydrogenation): \( \mathrm{R{-}CH{=}CH{-}R' + H_2 \xrightarrow{Ni/Pt} R{-}CH_2{-}CH_2{-}R'} \) Ni/Pt catalyst
(Vegetable oil → vanaspati ghee)