6. Statistics​

Class 10 – Chapter 6: Statistics (Notes, Q&A, Exercise Solutions)

Chapter 6 – Statistics

Class 10 • Maharashtra Board • Mathematics Part 1

Format: Questions in RedAnswers in Green • Mobile-friendly MathJax.

Topics: Mean (Direct • Assumed mean • Step-deviation) • Median • Mode • Graphs (Histogram • Frequency Polygon • Pie Diagram).

🚩 20 Most-Important 1-Mark Questions & Solutions

Q1. Define mean of \(N\) observations \(x_1,\dots,x_N\).

Ans. \(\displaystyle \bar{x}=\frac{\sum_{i=1}^N x_i}{N}\).

Q2. What is a class mark (mid-point) of class \(a\text{–}b\)?

Ans. \(\displaystyle x_i=\frac{a+b}{2}\).

Q3. Mean from grouped data (direct) is?

Ans. \(\displaystyle \bar{x}=\frac{\sum f_i x_i}{\sum f_i}\).

Q4. Assumed mean method formula.

Ans. \(\displaystyle \bar{x}=A+\frac{\sum f_i d_i}{\sum f_i}\), where \(d_i=x_i-A\).

Q5. Step-deviation method formula.

Ans. \(\displaystyle \bar{x}=A+\left(\frac{\sum f_i u_i}{\sum f_i}\right)g\), with \(u_i=\dfrac{x_i-A}{g}\).

Q6. Median of grouped data.

Ans. \(\displaystyle \text{Median}=L+\frac{\big(\frac{N}{2}-cf\big)}{f}\,h\).

Q7. Mode of grouped data.

Ans. \(\displaystyle \text{Mode}=L+\frac{f_1-f_0}{2f_1-f_0-f_2}\,h\).

Q8. When must classes be made continuous?

Ans. When upper limit of a class \(\neq\) lower limit of next; adjust by \(\pm 0.5\) (or half gap).

Q9. What is cumulative frequency ‘less than’?

Ans. Running total of frequencies up to the upper limit of each class.

Q10. Define modal class.

Ans. Class having the highest frequency.

Q11. Which graph uses rectangles for grouped data?

Ans. Histogram.

Q12. What are plotted to draw a frequency polygon without histogram?

Ans. Points \((\text{class mark},\ \text{frequency})\) plus two end points with frequency \(0\).

Q13. Central angle for a pie-sector of part \(p\) out of total \(T\).

Ans. \(\displaystyle \theta=\frac{p}{T}\times 360^\circ\).

Q14. State any two uses of statistics.

Ans. Data summarising & decision-making (e.g., economics, medicine, education).

Q15. If \(f=0\) for a class, what is its rectangle height in histogram?

Ans. Zero (no rectangle).

Q16. Write the symbol for total frequency.

Ans. \(N=\sum f_i\).

Q17. If two classes have same highest frequency, what about mode?

Ans. Data may be bimodal; mode lies in either modal class.

Q18. In median formula, what is \(cf\)?

Ans. Cumulative frequency of the class just before the median class.

Q19. Mean of deviations from actual mean.

Ans. Zero: \(\sum (x_i-\bar{x})=0\).

Q20. Which measure is best for most frequent value?

Ans. Mode.

📝 20 Most-Important 2-Mark Questions & Solutions

Q1. Find \(\bar{x}\) for data: \(x:\{2,3,5,10\}\) with \(f:\{4,6,3,2\}\).

Ans. \(\sum fx=8+18+15+20=61,\ N=15\Rightarrow \bar{x}=61/15=4.066\overline{6}\).

Q2. For class 10–20 with \(f=7\) find class mark.

Ans. \(x=\frac{10+20}{2}=15\).

Q3. Convert classes 30–39, 40–49 to continuous.

Ans. \(29.5\text{–}39.5,\ 39.5\text{–}49.5\) (subtract/add \(0.5\)).

Q4. Median class check: \(N=200\). If cumulative just before is \(92\) and next is \(150\), which is median class?

Ans. The latter (since \(N/2=100\in(92,150]\)).

Q5. Mode formula — identify \(f_0,f_1,f_2\).

Ans. \(f_1=\) frequency of modal class; \(f_0=\) of previous class; \(f_2=\) of next class.

Q6. If \(A=50,\ \sum f=40,\ \sum fd=-120\), find mean (assumed mean method).

Ans. \(\bar{x}=50+(-120/40)=47\).

Q7. Step-deviation: \(A=100,\ g=5,\ \sum fu=30,\ \sum f=60\). Find mean.

Ans. \(\bar{x}=100+(30/60)\cdot 5=102.5\).

Q8. In median, \(L=20,h=5,cf=18,f=10,N=60\). Compute.

Ans. \(N/2=30\Rightarrow 20+\frac{(30-18)}{10}\cdot 5=26\).

Q9. Mode with \(L=40,h=10,f_0=18,f_1=27,f_2=21\).

Ans. \(40+\frac{27-18}{54-18-21}\cdot 10=40+\frac{9}{15}\cdot 10=46\).

Q10. Write two uses of frequency polygon.

Ans. Shows shape (peaks/spread) and compares two distributions on same axes.

Q11. Central angle for 25% in pie.

Ans. \(0.25\times 360^\circ=90^\circ\).

Q12. Why use median instead of mean sometimes?

Ans. Median is robust to extreme values/outliers.

Q13. Krink mark (break) on axis is used when?

Ans. To skip a large gap near origin and keep graph compact.

Q14. Find missing \(f\): classes have \(f=\{6,?,10\}\) and total \(=20\).

Ans. Missing \(f=20-6-10=4\).

Q15. For 0–10, 10–20, 20–30 with \(f=5,8,7\), what is \(N\) and c.f. at 20–30?

Ans. \(N=20\), c.f. less than 30 \(=5+8+7=20\).

Q16. If \(\bar{x}=40\) and new data add 3 values each increased by 2, effect?

Ans. New mean = \(40+2=42\).

Q17. Which graph best displays component shares?

Ans. Pie diagram.

Q18. Class width if classes are 15–20, 20–25, ...

Ans. \(h=5\).

Q19. Identify outlier impact on mean.

Ans. Mean shifts toward outlier; median/mode less affected.

Q20. For equal widths, histogram bars should be …?

Ans. Adjacent (no gaps) and heights proportional to frequencies.

🎯 20 Most-Important 3-Mark Questions & Solutions

Q1. Compute mean (direct):

Classes 10–20, 20–30, 30–40, 40–50 with \(f=6,12,8,4\). Class marks \(15,25,35,45\). \(\sum fx=6\cdot15+12\cdot25+8\cdot35+4\cdot45=90+300+280+180=850,\ N=30\Rightarrow \bar{x}=850/30=28.\overline{3}.\)

Q2. Mean by assumed mean.

Same data, take \(A=25\). \(d:\{-10,0,10,20\}\). \(\sum fd=6(-10)+12(0)+8(10)+4(20)=-60+0+80+80=100\). \(\bar{x}=25+\frac{100}{30}=28.\overline{3}\).

Q3. Mean by step-deviation.

With \(g=10\), \(u=\{-1,0,1,2\}\). \(\sum fu=6(-1)+12(0)+8(1)+4(2)=-6+0+8+8=10\). \(\bar{x}=A+(10/30)\cdot 10=25+3.\overline{3}=28.\overline{3}\).

Q4. Find median.

Classes 0–10,10–20,20–30,30–40 with \(f=5,9,12,4\). \(N=30,\ N/2=15\). c.f.: 5,14,26 → median class 20–30. \(L=20,h=10,cf=14,f=12\Rightarrow 20+\frac{15-14}{12}\cdot 10=20+\frac{10}{12}=20+0.833\ldots=20.833\ldots\).

Q5. Find mode.

Classes 5–15,15–25,25–35,35–45 with \(f=8,15,12,5\). Modal class 15–25. \(L=15,h=10,f_1=15,f_0=8,f_2=12\Rightarrow 15+\frac{7}{30-8-12}\cdot 10=15+\frac{7}{10}\cdot 10=22\).

Q6. Convert to continuous & give mid-points: 20–24, 25–29, 30–34.

Continuous: \(19.5\text{–}24.5,\ 24.5\text{–}29.5,\ 29.5\text{–}34.5\). Mid-points: \(22,27,32\).

Q7. Read median from ‘less than’ c.f. table: c.f. are 8, 20, 36, 50, 65; classes 0–10,…40–50; find median.

\(N=65,\ N/2=32.5\Rightarrow\) median class 20–30. \(L=20,h=10,cf=20,f=16\Rightarrow 20+\frac{32.5-20}{16}\cdot 10=27.8125\).

Q8. For pie: parts \(12,18,30,40\). Find angles.

Total \(=100\). Angles: \(43.2^\circ,64.8^\circ,108^\circ,144^\circ\) respectively.

Q9. Histogram note.

Make classes continuous, choose equal scale, draw adjacent rectangles of width \(h\) and height proportional to \(f\).

Q10. Frequency polygon key points.

Plot \((\text{mid},f)\) for each class plus two end points at \(f=0\); join with straight lines.

Q11. Decide when to use mean/median/mode.

Mean: overall average; Median: skewed data/outliers; Mode: most popular item.

Q12. Show that \(\sum (x_i-\bar{x})=0\) for grouped data.

\(\sum f(x-\bar{x})=\sum fx-\bar{x}\sum f=\sum fx-N\bar{x}=0\).

Q13. If two classes tie as modal, what to do?

Data may be bimodal; report both modal classes or use graphical inspection.

Q14. From pie, sector angle \(=126^\circ\) out of total 900 people—find count.

\(\frac{126}{360}\cdot 900=315\).

Q15. Build ‘less than’ c.f. from \(f=\{6,9,4,1\}\).

c.f. \(=\{6,15,19,20\}\).

Q16. Mean of \(\{40,42,43,45,47,48\}\) via \(A=43\).

Deviations \(-3,-1,0,2,4,5\), sum \(=7\). \(\bar{x}=43+7/6=44\frac{1}{6}\).

Q17. Compute class mark list for 0–5,5–10,10–15,15–20.

Marks: \(2.5,7.5,12.5,17.5\).

Q18. If \(f\) all doubled, effect on mean/median/mode?

No change (weights scale, positions unchanged).

Q19. Why make classes continuous before median/mode?

To ensure no gaps so interpolation in formulas is valid.

Q20. For 6 classes, how many polygon vertices including zeros?

8 points (6 mids + 2 end zeros).

📘 Textbook Exercise Questions & Perfect Solutions

Practice Set 6.1 — Mean (Direct • Assumed • Step-Deviation)

Q1. Time used for study per day (hrs): 0–2:7, 2–4:18, 4–6:12, 6–8:10, 8–10:3. Find mean (direct).

Ans. Class marks \(x:1,3,5,7,9\). \(\sum fx=1\cdot7+3\cdot18+5\cdot12+7\cdot10+9\cdot3=218,\ N=50\Rightarrow \bar{x}=\frac{218}{50}=4.36\ \text{hrs}.\)

Q2. Toll (₹): 300–400:80, 400–500:110, 500–600:120, 600–700:70, 700–800:40. Find mean (assumed mean).

Ans. \(x:350,450,550,650,750\). Take \(A=550\). \(d=x-A=\{-200,-100,0,100,200\}\). \(\sum f=420,\ \sum fd=80(-200)+110(-100)+120(0)+70(100)+40(200)=-12000\). \(\bar{x}=A+\frac{\sum fd}{\sum f}=550-28.571\ldots=\mathbf{₹\,521.43}\) (approx).

Q3. Milk sold (L): 1–2:17, 2–3:13, 3–4:10, 4–5:7, 5–6:3. Mean (direct).

Ans. \(x:1.5,2.5,3.5,4.5,5.5\). \(\sum fx=141.0,\ N=50\Rightarrow \bar{x}=2.82\ \text{L}.\)

Q4. Orange production (₹ thousand): 25–30:20, 30–35:25, 35–40:15, 40–45:10, 45–50:10. Mean (assumed mean).

Ans. \(x:27.5,32.5,37.5,42.5,47.5\). \(A=32.5\). \(d=\{-5,0,5,10,15\}\). \(\sum f=80,\ \sum fd=225\Rightarrow \bar{x}=32.5+225/80=\mathbf{35.3125}\ (₹\,\text{thousand}).\)

Q5. Funds by 120 workers (₹): 0–500:35, 500–1000:28, 1000–1500:32, 1500–2000:15, 2000–2500:10. Mean (step-deviation).

Ans. \(x:250,750,1250,1750,2250\). \(A=1250,\ g=250,\ u=(x-A)/g=\{-4,-2,0,2,4\}\). \(\sum fu=35(-4)+28(-2)+32(0)+15(2)+10(4)=-126,\ \sum f=120\). \(\bar{x}=1250+(-126/120)\cdot 250=\mathbf{₹\,987.50}.\)

Q6. Weekly wages (₹): 1000–2000:25, 2000–3000:45, 3000–4000:50, 4000–5000:30. Mean (step-deviation).

Ans. \(x:1500,2500,3500,4500\). \(A=3500,\ g=500,\ u=\{-4,-2,0,2\}\). \(\sum fu=25(-4)+45(-2)+50(0)+30(2)=-130,\ N=150\). \(\bar{x}=3500+(-130/150)\cdot 500=\mathbf{₹\,3066.67}\) (approx).

Practice Set 6.2 — Median (Grouped Data)

Q1. Hours worked: 8–10:150, 10–12:500, 12–14:300, 14–16:50. Median?

Ans. \(N=1000,\ N/2=500\). c.f.: 150, 650, 950… Median class 10–12. \(L=10,h=2,cf=150,f=500\Rightarrow 10+\frac{500-150}{500}\cdot 2=\mathbf{11.4\ hr}.\)

Q2. Mango yield (per tree): 50–100:33, 100–150:30, 150–200:90, 200–250:80, 250–300:17.

Ans. \(N=250,\ N/2=125\). c.f.: 33,63,153… Median class 150–200. \(L=150,h=50,cf=63,f=90\Rightarrow 150+\frac{125-63}{90}\cdot 50=\mathbf{184.44}.\)

Q3. Vehicle speeds (km/h): 60–64:10, 64–69:34, 70–74:55, 75–79:85, 79–84:10, 84–89:6. Median?

Ans. Make continuous: \(59.5\text{–}64.5,\dots\). \(N=200,\ N/2=100\). c.f.: 10,44,99,184… Median class \(74.5\text{–}79.5\). \(L=74.5,h=5,cf=99,f=85\Rightarrow 74.5+\frac{1}{85}\cdot 5=\mathbf{74.56\ km/h}\) (approx).

Q4. Bulbs (thousands): 30–40:12, 40–50:35, 50–60:20, 60–70:15, 70–80:8, 80–90:7, 90–100:8.

Ans. \(N=105,\ N/2=52.5\). c.f.: 12,47,67… Median class 50–60. \(L=50,h=10,cf=47,f=20\Rightarrow 50+\frac{52.5-47}{20}\cdot 10=\mathbf{52.75}.\)

Practice Set 6.3 — Mode (Grouped Data)

Q1. Fat% vs milk (L): 2–3:30, 3–4:70, 4–5:80, 5–6:60, 6–7:20. Mode?

Ans. Modal class 4–5. \(L=4,h=1,f_1=80,f_0=70,f_2=60\Rightarrow 4+\frac{10}{160-70-60}\cdot 1=\mathbf{4.33\%}.\)

Q2. Electricity units: 0–20:13, 20–40:50, 40–60:70, 60–80:100, 80–100:80, 100–120:17.

Ans. Modal 60–80. \(L=60,h=20,f_1=100,f_0=70,f_2=80\Rightarrow 60+\frac{30}{200-70-80}\cdot 20=\mathbf{72}.\)

Q3. Milk to hotels (L): 1–3:7, 3–5:5, 5–7:15, 7–9:20, 9–11:35, 11–13:18.

Ans. Modal 9–11. \(L=9,h=2,f_1=35,f_0=20,f_2=18\Rightarrow 9+\frac{15}{70-20-18}\cdot 2=\mathbf{9.9375\ L}.\)

Q4. Patients’ ages: 0–5:38, 5–9:32, 10–14:50, 15–19:36, 20–24:24, 25–29:20.

Ans. Modal 10–14. \(L=10,h=5,f_1=50,f_0=32,f_2=36\Rightarrow 10+\frac{18}{100-32-36}\cdot 5=\mathbf{12.8125\ yrs}.\)

Practice Set 6.4 — Histogram (How to Present)

Q1. Heights (cm): 135–140:4, 140–145:12, 145–150:16, 150–155:8. Draw histogram.

Ans. Classes are continuous (width \(=5\)). On X-axis plot classes; Y-axis frequencies. Draw adjacent rectangles of heights \(4,12,16,8\). (Mobile tip: label mid-points \(137.5,142.5,147.5,152.5\) under bars.)

Q2. Jowar yield per acre (quintal): 2–3:30, 4–5:50, 6–7:55, 8–9:40, 10–11:20.

Ans. Make classes continuous if needed (e.g., \(1.5\text{–}3.5,\dots\)). Draw bars with heights \(30,50,55,40,20\).

Q3. Investment (₹ thousand): 10–15:30, 15–20:50, 20–25:60, 25–30:55, 30–35:15.

Ans. Equal widths; bars with heights \(30,50,60,55,15\).

Q4. Prep time (min): 60–80:14, 80–100:20, 100–120:24, 120–140:22, 140–160:16.

Ans. Draw bars for each class with the listed heights. Use a krink mark if axis needs skipping.

Practice Set 6.5 — Frequency Polygon

Q1. From polygon (fig 6.6 in text), answer:

Ans. (1) Max students at class 60–70 (peak). (2) Zero at 20–30 and 90–100. (3) Class-mark for 50 students \(=55\Rightarrow\) class 50–60. (4) Class-mark 85 \(\Rightarrow\) class 80–90 (limits 80,90). (5) Students in 80–90 \(\approx 35\).

Q2. Electricity bill (₹): 0–200:240, 200–400:300, 400–600:450, 600–800:350, 800–1000:160. Draw polygon.

Ans. Plot points at \((100,240),(300,300),(500,450),(700,350),(900,160)\) and add \(( - ,0)\) at \(x= -100\) & \((1100,0)\); join sequentially.

Q3. Result %: 30–40:7, 40–50:33, 50–60:45, 60–70:65, 70–80:47, 80–90:18, 90–100:5.

Ans. Points: \((35,7),(45,33),(55,45),(65,65),(75,47),(85,18),(95,5)\) plus end zeros at \(25,105\); join to form polygon.

Practice Set 6.6 — Pie Diagram

Q1. Blood donors by age (20–25:80, 25–30:60, 30–35:35, 35–40:25). Draw pie — find angles.

Ans. Total \(=200\). Angles: \(80/200\cdot 360=144^\circ,\ 60/200\cdot 360=108^\circ,\ 35/200\cdot 360=63^\circ,\ 25/200\cdot 360=45^\circ.\)

Q2. Marks (Eng 50, Mar 70, Sci 80, Math 90, SS 60, Hin 50). Angles?

Ans. Total \(=400\). Angles: Eng \(45^\circ\), Mar \(63^\circ\), Sci \(72^\circ\), Math \(81^\circ\), SS \(54^\circ\), Hin \(45^\circ\). (Sum \(=360^\circ\)).

Q3. Trees planted by Std 5–10: 40,50,75,50,70,75. Angles?

Ans. Total \(=360\). Angles: \(40:50:75:50:70:75\Rightarrow\) \(40/360\cdot 360=40^\circ,\ 50^\circ,\ 75^\circ,\ 50^\circ,\ 70^\circ,\ 75^\circ.\)

Q4. Fruit demand %: Mango 30, Sweet lime 25, Apples 20, Cheeku 10, Oranges 15. Angles?

Ans. \(108^\circ, 90^\circ, 72^\circ, 36^\circ, 54^\circ\) respectively.

Q5. Workers pie (fig 6.13). If total \(=10{,}000\): (i) construction? (ii) admin? (iii) production %?

Ans. Read sectors: suppose angles (as typical) Construction \(=72^\circ\Rightarrow \frac{72}{360}\cdot 10000=2000\). Admin sector angle (given) → count accordingly. Production percentage equals its sector’s degree ÷ \(360^\circ\times 100\%\). (Use actual figure labels on handout.)

Q6. Investments pie (fig 6.14). If ‘Shares’ \(=₹2000\) and shares sector \(=20\%\), find totals and amounts.

Ans. Total \(=2000/0.20=₹10000\). Deposit in bank (say \(=30\%\)) → \(₹3000\). Difference (Immovable \(-\) Mutual) (e.g., \(35\%-10\%=25\%\)) → \(₹2500\). Post (e.g., \(5\%\)) → \(₹500\). (Insert exact percentages from your pie diagram.)

Miscellaneous Problems – Chapter 6

Q1. 40% are blood group O. Sector angle?

Ans. \(\dfrac{40}{100}\cdot 360^\circ=\mathbf{144^\circ}\).

Q2. Cement ₹45{,}000 is a \(75^\circ\) sector. Total cost?

Ans. \(\frac{75}{360}=\frac{45000}{T}\Rightarrow T=\frac{45000\cdot 360}{75}=₹\mathbf{216000}\).

Q3. Cumulative frequencies help to find …?

Ans. Median.

Q4. In \(u\)-method, \(u_i=\ ?\)

Ans. \(u_i=\dfrac{x_i-A}{g}\).

Q5. Distance per litre groups 12–14:11, 14–16:12, 16–18:20, 18–20:7. Median group?

Ans. \(N=50,\ N/2=25\). c.f.: 11,23,43 → median class \(16\text{–}18\).

Q6. Trees per student 1–3:7, 4–6:8, 7–9:6, 10–12:4. Polygon point for class 4–6?

Ans. Class mark \(=5\Rightarrow (5,8)\).

Q7. Farmers’ income (k₹): 20–30:10, 30–40:11, 40–50:15, 50–60:16, 60–70:18, 70–80:14. Mean?

Ans. Class marks \(25,35,45,55,65,75\). \(\sum fx=10\cdot25+11\cdot35+15\cdot45+16\cdot55+18\cdot65+14\cdot75= (250+385+675+880+1170+1050)=\mathbf{4410}\). \(N=84\Rightarrow \bar{x}=\mathbf{52.5}\ k₹.

Q8. Bank loans (k₹): 40–50:13, 50–60:20, 60–70:24, 70–80:36, 80–90:7. Mean?

Ans. Marks \(45,55,65,75,85\). \(\sum fx=585+1100+1560+2700+595=\mathbf{6540}\). \(N=100\Rightarrow \bar{x}=\mathbf{65.40}\ k₹.\)

Q9. Weekly wages (₹): 0–2000:15, 2000–4000:35, 4000–6000:50, 6000–8000:20. Mean?

Ans. \(x:1000,3000,5000,7000\). \(\sum fx=15000+105000+250000+140000=\mathbf{510000}\). \(N=120\Rightarrow \bar{x}=\mathbf{₹\,4250}.\)

Q10. Aid (k₹): 50–60:7, 60–70:13, 70–80:20, 80–90:6, 90–100:4. Mean?

Ans. \(x:55,65,75,85,95\). \(\sum fx=385+845+1500+510+380= \mathbf{3620}\). \(N=50\Rightarrow \bar{x}=\mathbf{72.4}\ k₹.\)

Q11. Bus distances (km): 200–210:40, 210–220:60, 220–230:80, 230–240:50, 240–250:20. Median?

Ans. \(N=250,\ N/2=125\). c.f.: 40,100,180 → median class 220–230. \(L=220,h=10,cf=100,f=80\Rightarrow 220+\frac{25}{80}\cdot 10=\mathbf{223.125}.\)

Q12. Prices vs demand: <20:140, 20–40:100, 40–60:80, 60–80:60, 80–100:20. Median price class?

Ans. Convert to grouped with frequencies \(f:\{140,100,80,60,20\}\). \(N=400,\ N/2=200\). c.f.: 140,240 → median class 20–40.

Q13. Demand for sweet (g): 0–250:10, 250–500:60, 500–750:25, 750–1000:20, 1000–1250:15. Mode?

Ans. Modal 250–500. \(L=250,h=250,f_1=60,f_0=10,f_2=25\Rightarrow 250+\frac{50}{120-10-25}\cdot 250=250+\frac{50}{85}\cdot 250\approx \mathbf{397.06\ g}.\)

Q14. Histogram: electricity use (units) 50–70:150, 70–90:400, 90–110:460, 110–130:540, 130–150:600, 150–170:350.

Ans. Draw adjacent bars for each class with given heights (equal width \(=20\)).

Q15. Handloom days to weave (No. workers): 8–10:5, 10–12:16, 12–14:30, 14–16:40, 16–18:35, 18–20:14. Frequency polygon?

Ans. Plot \((9,5),(11,16),(13,30),(15,40),(17,35),(19,14)\) and end zeros at \(7,21\); join in order.

Q16. Experiment time (min): 20–22:8, 22–24:16, 24–26:22, 26–28:18, 28–30:12, 30–32:14. Draw histogram & polygon.

Ans. Histogram bars of listed heights. Polygon through midpoints \((21,8),(23,16),(25,22),(27,18),(29,12),(31,14)\) plus endpoints at \(19,33\) with \(0\).

Q17. Blood donors age (yrs): 20–24:38, 25–29:46, 30–34:35, 35–39:24, 40–44:15, 45–49:12. Frequency polygon?

Ans. Points \((22,38),(27,46),(32,35),(37,24),(42,15),(47,12)\) plus zeros at \(20,50\); join.

Q18. Average rainfall (cm) in 150 towns: 0–20:36, 20–40:48, 40–60:?, 60–80:?, 80–100:? (as per text) — draw polygon.

Ans. Use given full table; plot \((10,36),(30,48),\dots\) with end zeros; join. (Add actual remaining frequencies from your page.)

Q19. Vehicles pie (fig 6.15): compute each central angle and total vehicles if two-wheelers are 1200 and sector is 48%.

Ans. Angles = given % × \(360^\circ\). Total \(=1200/0.48=\mathbf{2500}\) vehicles.

Q20. Sports pie (fig 6.16) with total 1000 students. Find numbers for Cricket, Football, Others by reading sector %.

Ans. Multiply each sector % by 1000; e.g., \( \text{Cricket} = (\%\_\text{cricket})\times 10\).

🔑 Quick Summary

  • Mean (Direct): \(\bar{x}=\dfrac{\sum f_i x_i}{\sum f_i}\). Assumed mean: \(\bar{x}=A+\dfrac{\sum f_i d_i}{\sum f_i}\). Step: \(\bar{x}=A+\bar{u}\,g\).
  • Median: \(\displaystyle L+\frac{(\frac N2-cf)}{f}h\) (make classes continuous if needed).
  • Mode: \(\displaystyle L+\frac{f_1-f_0}{2f_1-f_0-f_2}h\) (modal class has max frequency).
  • Graphs: Histogram (bars), Frequency Polygon (midpoints), Pie (central angles \(\frac{\text{part}}{\text{total}}360^\circ\)).

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top
0

Subtotal