3. Chemical reactions and equations​

Chapter 3 — Chemical Reactions and Equations

Chemical Reactions Writing Equations Balancing Types of Reactions Endo/Exo Reactions Rate of Reaction Oxidation & Reduction Corrosion & Rancidity

Crisp MathJax for equations • Colours that pop but don’t touch your site’s menu.

Can You Recall?

  • What are the types of molecules of elements and compounds?
  • What is meant by valency of elements?
  • What is required to write molecular formulae and how are they written?

Physical vs Chemical Change

Physical change: State/appearance changes; composition remains same; often reversible (e.g., ice ↔ water).

Chemical change: Composition changes permanently; new substances form via bond breaking/forming (e.g., coal \(+\) oxygen \(\to\) carbon dioxide).

Observation Table Template

PhenomenonColour change?Gas released?Temperature change?Type
Ice → waterYes (on heating)Physical
Cooking of foodOftenMayYesChemical
Ripening of fruitYesChemical
Milk → curdChemical
Evaporation of waterYesPhysical
DigestionYesChemical

Word Equations → Chemical Equations

Example (Displacement):

Word: Aqueous copper sulphate \(+\) zinc dust \(\rightarrow\) aqueous zinc sulphate \(+\) copper.
Chemical: \(\mathrm{CuSO_4 + Zn \rightarrow ZnSO_4 + Cu}\).

Conventions while Writing Equations

  • Reactants (LHS) → Products (RHS); arrow shows direction.
  • Use \(+\) between multiple reactants/products.
  • Physical states: \((\mathrm{s}),(\mathrm{l}),(\mathrm{g}),(\mathrm{aq})\). Gas evolved: \(\uparrow\); precipitate: \(\downarrow\).
  • Heat supplied: write \( \Delta \) above the arrow; heat evolved: add “\(+\ \text{Heat}\)”.
  • Conditions (temp/pressure/catalyst) above/below arrow.
  • Concentrated/dilute reagents specified near formulae.

States & Heat

\(\mathrm{CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s) + Heat}\)
\(\mathrm{CaCO_3(s) \xrightarrow{\ \Delta\ } CaO(s) + CO_2(g)}\)

Conditions & Special Notes

\(\mathrm{Vegetable\ oil\ (l) + H_2(g)\ \xrightarrow[Ni]{60^{\circ}C}\ Vanaspati\ ghee\ (s)}\)
\(\mathrm{Cu(s) + 4\,HNO_3(aq)\ (conc.) \rightarrow Cu(NO_3)_2(aq) + 2\,NO_2(g) + 2\,H_2O(l)}\)
\(\mathrm{3\,Cu(s) + 8\,HNO_3(aq)\ (dil.) \rightarrow 3\,Cu(NO_3)_2(aq) + 2\,NO(g) + 4\,H_2O(l)}\)

Balancing a Chemical Equation (Trial-and-Error)

Example: Sodium hydroxide \(+\) sulphuric acid \(\rightarrow\) sodium sulphate \(+\) water

\(\mathrm{NaOH + H_2SO_4 \rightarrow Na_2SO_4 + H_2O}\) (unbalanced)
  1. Choose a complex species: balance Na using \(\mathrm{2\,NaOH}\).
  2. Balance H by placing coefficient 2 before \(\mathrm{H_2O}\).
  3. Check O and S; equation balances.
\(\boxed{\mathrm{2\,NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2\,H_2O}}\)

Ion Exchange (Double Displacement) — Already Balanced

\(\mathrm{AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s)\downarrow + NaNO_3(aq)}\)

Types of Chemical Reactions

1) Combination

Two or more reactants combine to form one product.

\(\mathrm{NH_3(g) + HCl(g) \rightarrow NH_4Cl(s)}\) (white fumes)
\(\mathrm{2\,Mg(s) + O_2(g) \rightarrow 2\,MgO(s)}\) (white powder)
\(\mathrm{CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(aq)\ +\ Heat}\)

2) Decomposition

One reactant breaks into two or more products (thermal / electrolytic).

\(\mathrm{C_{12}H_{22}O_{11}\ (s)\ \xrightarrow{\ \Delta\ }\ 12\,C(s) + 11\,H_2O(l)}\)
\(\mathrm{CaCO_3(s)\ \xrightarrow{\ \Delta\ }\ CaO(s) + CO_2(g)}\)
\(\mathrm{2\,H_2O_2(l) \rightarrow 2\,H_2O(l) + O_2(g)}\) (faster with \(\mathrm{MnO_2}\))
\(\mathrm{2\,H_2O(l)\ \xrightarrow{\ electricity }\ 2\,H_2(g) + O_2(g)}\)

3) Displacement (Single)

A more reactive element displaces a less reactive one from its compound.

\(\mathrm{CuSO_4(aq) + Zn(s) \rightarrow ZnSO_4(aq) + Cu(s)}\)

4) Double Displacement (Precipitation/Neutralization)

Exchange of ions between reactants; often forms a precipitate.

\(\mathrm{AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s)\downarrow + NaNO_3(aq)}\)

Endothermic & Exothermic — Processes and Reactions

Processes

  • Endothermic: Melting of ice; dissolving \(\mathrm{KNO_3}\) in water (temperature falls).
  • Exothermic: Freezing of water; dissolving \(\mathrm{NaOH}\) in water (temperature rises).
  • Safety: Always add acid to water, never water to conc. \(\mathrm{H_2SO_4}\) (violent heat).

Reactions

Endothermic: \(\mathrm{CaCO_3(s) \xrightarrow{\ \Delta\ } CaO(s) + CO_2(g)}\)
Exothermic: \(\mathrm{CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(aq) + Heat}\)

Rate of Chemical Reaction

Some reactions are rapid (gas ignition, effervescence with acid), others slow (rusting, rock erosion). Rate changes with conditions.

Factors Affecting Rate

  1. Nature of reactants: More reactive substances react faster (Al \(>\) Zn with \(\mathrm{HCl}\)).
  2. Particle size: Smaller particles → larger surface area → faster (powder \(>\) pieces).
  3. Concentration: Higher concentration → higher rate (conc. \(\mathrm{HCl}\) \(>\) dilute \(\mathrm{HCl}\) with \(\mathrm{CaCO_3}\)).
  4. Temperature: Higher temperature → faster rate (curd sets faster in summer).
  5. Catalyst: Increases rate without itself undergoing change (e.g., \(\mathrm{MnO_2}\) in \(\mathrm{KClO_3}\) or \(\mathrm{H_2O_2}\) decomposition).
\(\mathrm{2\,KClO_3\ \xrightarrow{\ \Delta\ }\ 2\,KCl + 3\,O_2}\) (slow) \(\ \ \) \(\mathrm{2\,KClO_3\ \xrightarrow[\ MnO_2\ ]{\ \Delta\ }\ 2\,KCl + 3\,O_2}\) (fast)

Oxidation, Reduction & Redox

By Oxygen/Hydrogen

Oxidation (add O / remove H):
\(\mathrm{2\,Mg + O_2 \rightarrow 2\,MgO}\), \(\ \mathrm{C + O_2 \rightarrow CO_2}\)
\(\mathrm{CH_3\!-\!CH_3 \rightarrow CH_2{=}CH_2 + H_2}\) (dehydrogenation)
Reduction (add H / remove O):
\(\mathrm{CuO + H_2 \rightarrow Cu + H_2O}\)

By Electron Transfer

Oxidation: loss of electrons. Reduction: gain of electrons.

Oxidation of iron(II): \(\mathrm{Fe^{2+} \rightarrow Fe^{3+} + e^{-}}\)
(in acidic \(\mathrm{KMnO_4}\) reactions)

Oxidizing Agents (provide \([O]\))

\(\mathrm{CH_3-CH_2OH \xrightarrow[\ H_2SO_4\ ]{\ K_2Cr_2O_7\ }\ CH_3-COOH}\) (ethyl alcohol → acetic acid)

Common oxidants: \(\mathrm{K_2Cr_2O_7/H_2SO_4}\), \(\mathrm{KMnO_4/H_2SO_4}\), \(\mathrm{H_2O_2}\), \(\mathrm{O_3}\). They generate nascent oxygen \([O]\).

More Redox Examples

\(\mathrm{2\,H_2S + SO_2 \rightarrow 3\,S + 2\,H_2O}\)
\(\mathrm{MnO_2 + 4\,HCl \rightarrow MnCl_2 + 2\,H_2O + Cl_2}\)
Redox: In every redox reaction, oxidation and reduction occur simultaneously.

Corrosion (Rusting of Iron)

Damage of metals due to atmospheric reactions (moisture + oxygen). Iron forms reddish hydrated oxide (rust) \(\mathrm{Fe_2O_3\cdot xH_2O}\).

Electrochemical Steps

Anode (oxidation): \(\mathrm{Fe(s) \rightarrow Fe^{2+}(aq) + 2e^{-}}\)
Cathode (reduction): \(\mathrm{O_2(g) + 4H^{+}(aq) + 4e^{-} \rightarrow 2H_2O(l)}\)

Formed \(\mathrm{Fe^{2+}}\) further oxidizes to \(\mathrm{Fe^{3+}}\), giving rust:

\(\mathrm{2\,Fe^{3+}(aq) + 4\,H_2O(l) \rightarrow Fe_2O_3\cdot xH_2O(s) + 6\,H^{+}(aq)}\)

Key Points

  • Requires both air and water; salt speeds up rusting.
  • Prevention (general knowledge): painting/oiling, galvanizing, alloys, sacrificial protection.

Rancidity

Unpleasant smell/taste in oils/foods due to air oxidation on standing. Prevent using antioxidants, airtight containers, refrigeration.

Key Equations at a Glance

\(\mathrm{CuSO_4(aq)+Zn(s)\rightarrow ZnSO_4(aq)+Cu(s)}\)
\(\mathrm{AgNO_3(aq)+NaCl(aq)\rightarrow AgCl(s)\downarrow+NaNO_3(aq)}\)
\(\mathrm{CaCO_3(s)\xrightarrow{\ \Delta\ }CaO(s)+CO_2(g)}\)
\(\mathrm{2\,H_2O_2(l)\rightarrow 2\,H_2O(l)+O_2(g)}\)
\(\mathrm{2\,NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2\,H_2O}\)
\(\mathrm{CuO + H_2 \rightarrow Cu + H_2O}\)

Use Your Brain Power!

  • Write states and balance: \(\mathrm{SO_2 + 2\,H_2S \rightarrow 3\,S + 2\,H_2O}\).
  • Complete & name products: \(\mathrm{CuSO_4(aq)+Fe(s)\rightarrow ?}\), \(\mathrm{CuSO_4(aq)+Pb(s)\rightarrow ?}\).
  • Balance: \(\mathrm{N_2(g)+H_2(g)\rightarrow NH_3(g)}\).
  • Write ionic change for oxidation of \(\mathrm{Fe^{2+}}\) to \(\mathrm{Fe^{3+}}\).
Always remember: A balanced equation conserves atoms of each element. Types—combination, decomposition, displacement, double displacement—help predict products. Endo/exo label heat flow. Rate depends on nature, size, concentration, temperature, and catalysts. Oxidation = loss of electrons / add O / remove H; Reduction = gain of electrons / remove O / add H. Corrosion and rancidity are everyday redox outcomes.

All math and chemistry symbols are rendered via MathJax with enhanced readability for fractions, exponents, powers, and units. Styles are scoped to .chem-notes-ch3, so your site’s menu remains unchanged.

Chapter 3 — Exercise Answers (Perfect & Beautiful)

MCQ + Reasons Short Answers Definitions Scientific Reasons Redox & Corrosion Balancing Thermochemistry Matching

MathJax renders all equations cleanly on mobile. Styles are scoped so your menu stays intact.

Q1) Choose the correct option from the bracket and explain

Options: (Oxidation, displacement, electrolysis, reduction, zinc, copper, double displacement, decomposition)

  1. a) To prevent rusting, a layer of zinc metal is applied on iron sheets. (Galvanization: Zn is more reactive and protects Fe.)
  2. b) Conversion of ferrous sulphate to ferric sulphate is an oxidation reaction. (\(\mathrm{Fe^{2+} \to Fe^{3+} + e^-}\): loss of electron.)
  3. c) When electric current is passed through acidulated water, electrolysis of water takes place. (\(\mathrm{2H_2O \to 2H_2 + O_2}\))
  4. d) Mixing \(\mathrm{ZnSO_4(aq)}\) with \(\mathrm{BaCl_2(aq)}\) gives white \(\mathrm{BaSO_4}\) ppt — a double displacement reaction.
    \(\mathrm{Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4(s)\downarrow}\)

Q2) Write answers

a) Name the reaction with simultaneous oxidation and reduction. Example.

Redox reaction — oxidation and reduction occur together.

\(\mathrm{CuO + H_2 \rightarrow Cu + H_2O}\)

Here, \(\mathrm{CuO}\) is reduced to Cu (loss of O) and \(\mathrm{H_2}\) is oxidized to \(\mathrm{H_2O}\) (gain of O).

b) How to increase the rate of decomposition of \(\mathrm{H_2O_2}\)?

  • Add a catalyst like \(\mathrm{MnO_2}\) or KI (most effective & common in lab).
  • Increase temperature (within safe limits).
  • Use light (photochemical decomposition).
\(\mathrm{2H_2O_2 \xrightarrow[\ MnO_2\ ]{} 2H_2O + O_2}\)

c) Reactant and product (with examples)

Reactants are starting substances; products are substances formed.

\(\mathrm{AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s)\downarrow + NaNO_3(aq)}\)

Reactants: \(\mathrm{AgNO_3}\), \(\mathrm{NaCl}\). Products: \(\mathrm{AgCl}\), \(\mathrm{NaNO_3}\).

d) Types of reactions with reference to oxygen & hydrogen

  • Oxidation: addition of O / removal of H / loss of e\(^-\).
    \(\mathrm{C + O_2 \rightarrow CO_2}\), \(\ \mathrm{MgH_2 \rightarrow Mg + H_2}\) (dehydrogenation)
  • Reduction: addition of H / removal of O / gain of e\(^-\).
    \(\mathrm{CuO + H_2 \rightarrow Cu + H_2O}\)

e) Similarity & difference: adding \(\mathrm{NaOH}\) to water vs. adding \(\mathrm{CaO}\) to water

  • Similarity: Both are exothermic (temperature rises).
  • Difference:
    • \(\mathrm{NaOH + H_2O}\): dissolution (physical process) with heat.
    • \(\mathrm{CaO + H_2O \rightarrow Ca(OH)_2}\): chemical reaction (combination) with heat.

Q3) Explain terms with examples

  • a) Endothermic reaction: absorbs heat.
    \(\mathrm{CaCO_3(s) \xrightarrow{\ \Delta\ } CaO(s) + CO_2(g)}\)
  • b) Combination reaction: two or more reactants \(\to\) one product.
    \(\mathrm{2Mg + O_2 \rightarrow 2MgO}\)
  • c) Balanced equation: atoms of each element equal on both sides.
    \(\mathrm{2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O}\)
  • d) Displacement reaction: a more reactive element displaces a less reactive one.
    \(\mathrm{CuSO_4(aq) + Fe(s) \rightarrow FeSO_4(aq) + Cu(s)}\)

Q4) Scientific reasons

  1. a) Heating limestone (\(\mathrm{CaCO_3}\)) gives \(\mathrm{CO_2}\). Passing it through fresh lime water forms insoluble \(\mathrm{CaCO_3}\) (milky).
    \(\mathrm{CaCO_3(s) \xrightarrow{\ \Delta\ } CaO(s) + CO_2(g)}\)
    \(\mathrm{Ca(OH)_2(aq) + CO_2(g) \rightarrow CaCO_3(s)\downarrow + H_2O(l)}\)
  2. b) Powder of Shahabad tile (fine \(\mathrm{CaCO_3}\)) reacts faster with HCl than pieces due to greater surface area (higher rate).
    \(\mathrm{CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)}\)
  3. c) Diluting conc. \(\mathrm{H_2SO_4}\) is highly exothermic. Adding acid slowly to water allows heat to dissipate safely; adding water to acid can cause splashing/boiling.
  4. d) Oils become rancid by air oxidation. Airtight containers limit oxygen contact (and often light), slowing oxidation — longer shelf life.

Q5) Rusting picture — write the reaction with explanation

Under a water drop on iron, tiny regions act as electrodes:

Anode (less oxygen)

\(\mathrm{Fe(s) \rightarrow Fe^{2+}(aq) + 2e^-}\) (oxidation)

Cathode (more oxygen)

\(\mathrm{O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)}\) (reduction, neutral/alkaline)

Then:

\(\mathrm{Fe^{2+} + 2OH^- \rightarrow Fe(OH)_2(s)}\ \xrightarrow[\ O_2\ ]{}\ Fe(OH)_3(s)\ \rightarrow\ Fe_2O_3\cdot xH_2O\ (rust)\)

Explanation: Differential aeration inside the water drop makes a tiny electrochemical cell; iron is oxidized and hydrated iron oxides (rust) deposit.

Q6) Identify oxidation & reduction

  1. a) \(\mathrm{Fe + S \rightarrow FeS}\): Fe is oxidized (0→+2), S is reduced (0→−2).
  2. b) \(\mathrm{2Ag_2O \rightarrow 4Ag + O_2}\): In \(\mathrm{Ag_2O}\), \(\mathrm{Ag^+}\) is reduced to Ag(0); \(\mathrm{O^{2-}}\) is oxidized to \(\mathrm{O_2}\).
  3. c) \(\mathrm{2Mg + O_2 \rightarrow 2MgO}\): Mg is oxidized; \(\mathrm{O_2}\) is reduced.
  4. d) \(\mathrm{NiO + H_2 \rightarrow Ni + H_2O}\): \(\mathrm{NiO}\) (Ni\(^{2+}\)) is reduced to Ni; \(\mathrm{H_2}\) is oxidized to \(\mathrm{H_2O}\).

Q7) Balance the equations stepwise

a) \(\mathrm{H_2S_2O_7(l) + H_2O(l) \rightarrow H_2SO_4(l)}\)

  1. Count atoms (LHS): H=4, S=2, O=8.
  2. Make RHS S=2 by coefficient 2: \(\mathrm{2H_2SO_4}\).
  3. Check H (4) and O (8): balanced.
\(\boxed{\mathrm{H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4}}\)

b) \(\mathrm{SO_2(g) + H_2S(aq) \rightarrow S(s) + H_2O(l)}\)

  1. Balance S using inspection: put 2 before \(\mathrm{H_2S}\) and 3 before S.
  2. Balance H by putting 2 before \(\mathrm{H_2O}\).
\(\boxed{\mathrm{SO_2 + 2H_2S \rightarrow 3S + 2H_2O}}\)

c) \(\mathrm{Ag(s) + HCl(aq) \rightarrow AgCl + H_2}\)

Note: This reaction does not occur. Silver is less reactive than hydrogen and cannot displace H from HCl, so it cannot be balanced because the reaction is chemically invalid. A valid displacement example is:
\(\mathrm{Zn + 2HCl \rightarrow ZnCl_2 + H_2}\)

d) \(\mathrm{NaOH(aq) + H_2SO_4(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)}\)

  1. Balance Na with coefficient 2 on \(\mathrm{NaOH}\).
  2. Balance H/O by putting 2 on \(\mathrm{H_2O}\).
\(\boxed{\mathrm{2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O}}\)

Q8) Identify endothermic vs exothermic

  • a) \(\mathrm{HCl + NaOH \rightarrow NaCl + H_2O + \text{heat}}\) — Exothermic (neutralization).
  • b) \(\mathrm{2KClO_3(s) \xrightarrow{\ \Delta\ } 2KCl(s) + 3O_2}\) — Endothermic (requires heat).
  • c) \(\mathrm{CaO + H_2O \rightarrow Ca(OH)_2 + \text{heat}}\) — Exothermic.
  • d) \(\mathrm{CaCO_3(s) \xrightarrow{\ \Delta\ } CaO(s) + CO_2}\) — Endothermic.

Q9) Match the columns — Correct pairing

ReactantsProductsType of reaction
\(\mathrm{BaCl_2(aq) + ZnSO_4(aq)}\) \(\mathrm{BaSO_4(s)\downarrow + ZnCl_2(aq)}\) Double displacement (precipitation)
\(\mathrm{2AgCl(s)}\) \(\mathrm{2Ag(s) + Cl_2(g)}\) Decomposition
\(\mathrm{CuSO_4(aq) + Fe(s)}\) \(\mathrm{FeSO_4(aq) + Cu(s)}\) Displacement
\(\mathrm{H_2O(l) + CO_2(g)}\) \(\mathrm{H_2CO_3(aq)}\) Combination
Fractions, exponents, oxidation states and ionic equations above are rendered with MathJax for perfect clarity on phones. If you embed this block as-is, your site’s menu bar remains unchanged (scoped to .chem-exercise-ch3).

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top